A $^3\text{He} - ^{129}\text{Xe}$ co-magnetometer with ^{87}Rb magnetometry

Mark Limes, Dong Sheng, Mike Romalis

^3He and ^{129}Xe are read out by probing polarized ^{87}Rb by Faraday rotation. The spins are manipulated using a ^{87}Rb pump laser and magnetic field coils, with parallel or perpendicular pump/probe beams.

The ^{87}Rb magnetometer using π pulse detection has a sensitivity of 40 fT/sqrt(Hz).

References:

Pump and Probe

Parallel and Perpendicular Pump/probe Schemes

After hyperpolarizing ^3He and ^{129}Xe using spin-exchange with optically pumped ^{87}Rb, a π/2 pulse is applied to the noble gases. Two detection periods then determine the phases with which the noble gases enter and leave the “in-the-dark” decoupling period.

Rb π pulses gives decoupling of the Rb-Xe Fermi-contact interaction along a single axis by a factor approaching 10^4, a factor of 10^2 better than sine-wave depolarization schemes [1] (inset).

By flipping the bias field, we can calibrate our system using Earth’s rotation. A pulse rotation frequency equal to the sum of the He and Xe precession frequencies gives a measurement that is insensitive to Rb π pulse height. Small imperfections, such as time delays between the pulse axes, can lead to artificial additions to the x-y pulse sequence rotation.

An “in-the-dark” decoupling pulse scheme averages the ^{87}Rb polarization along three axes, introduces no net helicity of the field pulses, and is rotated to null the effect of the sequence on the precession frequency ratio.

References: