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Numerical study of spin-dependent transition rates within pairs of dipolar and exchange coupled
spins with s = 1

2 during magnetic resonant excitation
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The effect of dipolar and exchange interactions within pairs of paramagnetic electronic states on Pauli-
blockade-controlled spin-dependent transport and recombination rates during magnetic resonant spin excitation
is studied numerically using the superoperator Liouville-space formalism. The simulations reveal that spin-Rabi
nutation induced by magnetic resonance can control transition rates which can be observed experimentally by
pulsed electrically (pEDMR) and pulsed optically (pODMR) detected magnetic resonance spectroscopies. When
the dipolar coupling exceeds the difference of the pair partners’ Zeeman energies, several nutation frequency
components can be observed, the most pronounced at

√
2γB1 (γ is the gyromagnetic ratio, B1 is the excitation

field). Exchange coupling does not significantly affect this nutation component; however, it does strongly influence
a low-frequency component < γB1. Thus, pEDMR/pODMR allow the simultaneous identification of exchange
and dipolar interaction strengths.

DOI: 10.1103/PhysRevB.87.165204 PACS number(s): 42.65.Pc, 42.50.Md, 78.47.D−, 85.85.+j

I. INTRODUCTION

In solids with weak spin-orbit coupling such as silicon or
carbon-based materials, spin-selection rules induced by spin
conservation can drastically influence optical and electrical
materials properties.1–4 Because of this, a manipulation of
spin states, e.g., by means of magnetic resonance, can change
conductivity, luminescence, or absorption. These effects can
be used for the investigation of the microscopic physical
nature of the paramagnetic species involved in these processes,
as is done with experimental techniques such as electrically
(EDMR) and optically (ODMR) detected magnetic resonance
spectroscopies. An abundance of spin-dependent processes has
been reported in the literature.1–3,5–8 Most of these reports
involve the Pauli-blockade effect, where a transition of two
paramagnetic states with s = 1

2 into a single doubly occupied
electron state with singlet configuration is controlled by the
singlet content of the pair before the transition occurs. Such
mechanisms are usually described by an “intermediate-pair”
process, where an exclusive pair of two spins is formed. This
pair then either dissociates with spin-independent probability
or undergoes a transition into the singlet state |S〉 that happens
with probability ∝|〈S|�〉|2, where |�〉 is the spin state of
the pair before the transition. This intermediate-pair model,
developed by Kaplan, Solomon, and Mott (KSM) in 1978,1

is distinct from other s = 1
2 pair models which do not require

the exclusive intermediate pair (see for instance the Lepine2

model). However, many experimental EDMR (Refs. 9 and 10)
and ODMR (Ref. 11) studies have shown the validity of
this picture for the description of several spin-dependent
recombination and transport effects which involve transitions
between localized electronic states. The KSM model is thus
the basis for the calculation of spin-dependent transition rates
presented here.

With the availability of high-power microwave sources, and
the resulting development of pulsed electron paramagnetic
resonance (EPR) techniques in the past 25 years, ODMR and
EDMR have increasingly been conducted as transient, pulsed
(p) experiments, on time scales where coherent spin-motion

effects11–14 take place. Since coherent propagation of a
quantum mechanical system is directly controlled by its
Hamiltonian, this development in experimental techniques
has dramatically enhanced access to the fundamental physical
nature of the microscopic systems responsible for the EDMR
and ODMR signals. Coherent spin effects such as spin echoes,
spin–Rabi nutation, or dynamic decoupling schemes have pro-
duced a variety of experimental insights. In order to fully utilize
the spin effects observed with these techniques, a rigorous
theoretical understanding of the signals is necessary. As pEPR
spectroscopy evolved over the past decades, many studies have
contributed to the development of this understanding,15,16 and
it is now straightforward to derive information from pEPR
data about Landé factors, spin-spin coupling phenomena,
such as exchange coupling, dipolar coupling (which reveals
distance between interacting spins), hyperfine couplings, and
relaxation times, among other variables. Unfortunately, this
rather comprehensive theory of pulsed EPR spectroscopy is
only partially applicable to pulsed EDMR and ODMR exper-
iments. EDMR and ODMR are performed by measurement
of spin-dependent rates whose observables depend on the
permutation symmetry of the involved spin pairs, i.e., the
singlet and triplet content. Thus, the observable of EDMR
and ODMR experiments is fundamentally different than the
observable of EPR experiments, the latter being the magnetic
polarization of the observed spin ensemble. As a consequence,
a spin ensemble that is simultaneously observed with EPR and
EDMR/ODMR may exhibit entirely different signal behavior
due to the different observables onto which the observed spin
ensemble is projected.

Several recent studies aimed at developing and understand-
ing pEDMR and pODMR signals have focused on electri-
cally or optically detected transient nutation measurements,
where a spectroscopy of observed spin-Rabi oscillation is
conducted.4,17–22 These studies have considered various spin-
coupling regimes for the spin pair, including the absence
of any spin-spin coupling,4,17,20 the presence of exchange
interaction,18 and a disorder-induced distribution of spin-orbit
interaction strengths.19,20 Recently, the first analytical study of
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coherently controlled spin-dependent transition rates within
pairs of strongly exchange- and dipolar-coupled pairs was
conducted.21 However, a general numerical or analytical study
for electrically or optically detected transient nutation of pairs
with arbitrary spin-dipolar and spin-exchange interactions is
lacking. Such a study is the focus of this work.

II. INTERMEDIATE-SPIN-PAIR MODEL WITH DIPOLAR
AND EXCHANGE COUPLING

Following previous discussions of spin-dependent transi-
tions controlled by intermediate pairs,1,4,17–21,23 we describe
the dipolar and exchange coupled intermediate-spin- 1

2 pairs
with the Hamiltonian

Ĥspin=h̄
[
B · (γaŜa+γbŜb) − J Ŝa · Ŝb − D

(
3Ŝz

aŜ
z
b−Ŝa · Ŝb

)]
.

(1)

Here, the first term represents the Zeeman interaction for both
spin-pair partners, the second term is an isotropic exchange
interaction, the third is a secular (high-field approximation)
magnetic-dipole coupling, and γa , γb are the effective gyro-
magnetic ratios of the spin-pair partners a and b, respectively.
The magnetic field

B = ẑB0+x̂B1 cos(ωt) −ŷB1 sin(ωt) (2)

consists of a static component B0 along the ẑ axis, and an
oscillating component that is chosen to be in the x̂–ŷ plane.
When the exchange coupling strength J and the dipolar
coupling strength D are scaled by h̄, they can be directly
compared to the Larmor separation �ω of the electron and
hole. The negative signs in front of the D and J terms are
chosen to represent an attractive electron-hole pair.24–26 We
note that changing the sign of J and/or D will not change the
results presented below (such a sign change could occur for
like-charge spin pairs, e.g., bipolarons6).

The spin-pair Hamiltonian in absence of radiative excitation
(B1 =0) is rotated into an energy eigenbasis by a Jacobi
rotation Ĥen =U †ĤspinU , with the resulting eigenbasis given
by

U †

⎛
⎜⎜⎜⎝

|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

|↑↑〉
cos(φ) |↑↓〉−sin(φ) |↓↑〉
cos(φ) |↑↓〉+sin(φ) |↓↑〉

|↓↓〉

⎞
⎟⎟⎟⎠ , (3)

where cot(2φ) = �ω
J−D

. In the case of either strong dipo-
lar or strong exchange interaction, the energy eigenbasis
becomes a set of singlet and triplet states. With strong
dipolar coupling φ→−π

4 (D→∞,J →0), the energy eigen-
basis becomes {|T+〉 , |T0〉 , |S〉 , |T−〉}; strong exchange cou-
pling φ→ π

4 (J →∞,D→0) produces an energy eigenbasis
{|T+〉 , |S〉 , |T0〉 , |T−〉}. In either one of these strong-coupling
cases, the only ESR-allowed transitions are those within
the triplet manifold, leading to a strong triplet ESR signal.
However, because the triplet-singlet transition probability is
zero, there is no observable pODMR/pEDMR signal. Any
intermediate case (e.g., J ≈ D ≈ �ω) will have an energy
eigenbasis of {|T+〉 , |2〉 , |3〉 , |T−〉}, where |2〉 and |3〉 will
each have a mixture of singlet and triplet content defined by
the relative magnitudes of the dipolar and exchange strengths.

Therefore, the transitions between states are uniquely governed
by the collection of system parameters D, J , and �ω.

For pODMR/pEDMR experiments on intermediate-spin-
pair processes, the observable depends on the permutation
symmetry of the individual pairs, contrary to most conven-
tional spectroscopy experiments that probe polarization states.
An extended discussion of such intermediate-pair related
pEDMR/pODMR observables is given by Gliesche et al.,18

who established the connection of the spin-density operator
ρ̂ of an ensemble of spin- 1

2 pairs to a spin-dependent rate
transient

Q(τ ) =
∫ t0

0
R(t)dt =

4∑
i=1

[
ρ̂ii(τ ) − ρ̂S

ii

]
(1 − e−ri t0 ), (4)

which follows coherent spin excitation. In Eq. (4), the density
matrix is in the 4 × 4 energy eigenbasis representation and
the time-dependent function R(t) is the spin-dependent rate
after the pulse excitation, which is assumed to end at t = 0.
Since R(t) is a current for pEDMR experiments, the integral
Q(τ ) becomes a number of charge carriers which undergo
spin-dependent transitions due to the resonant spin excitation.
The dependence of Q on the pulse length τ will reveal
information about how the density operator ρ̂ evolves from the
steady state to a coherent state due to the resonant excitation.
Thus, Q(τ ) is an easily accessible observable for the coherently
manipulated spin ensemble, representing either the number of
charge carriers (for pEDMR) or photons (for pODMR).

The transient evolution of Q(τ ) during the pulse can be
fast Fourier transformed [FFT{Q(τ )}] in order to make the
frequency components of the coherent spin motion explicit.
A comparison of experimentally obtained Rabi frequency
spectra with calculations we present in the following gives
insight into the nature of the spin-pair Hamiltonian. As the
spin-pair Hamiltonian crucially depends on the microscopic
nature of the spin pairs, pEDMR/pODMR experiments are
superb probes to gain unambiguous experimental access to
spin-dependent transport and recombination processes.

Again, following previous descriptions of Refs. 4,17–21,
and 23 we describe the evolution of the density operator ρ̂ by
a stochastic Liouville equation

∂t ρ̂ = i

h̄
[ρ̂,Ĥen] + S[ρ̂], (5)

where the stochastic term S[ρ̂]=Scr[ρ̂]+San[ρ̂] is the sum of
creation and annihilation terms of the spin pairs.

As shown elsewhere,4 the recombination probabilities for
the different energy eigenbasis states are given by ri =
rS |〈i|S〉|2 + rT 〈i|T 〉|2, where rS and rT are the singlet and
triplet recombination probabilities, respectively. Using Eq. (3),
the various recombination rates can be expressed in terms of
the coupling parameters by

r1,4 = rT , (6)

r2,3 = 1

2
rS

(
1 ∓ J − D√

(J − D)2 + (�ω)2

)

+ 1

2
rT

(
1 ± J − D√

(J − D)2 + (�ω)2

)
. (7)
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The eigenstates |1〉 and |4〉 always remain pure triplet states
(|T +〉 and |T −〉, respectively); their recombination rates
are thus not affected by any coupling within the spin pair.
Under strong coupling such as D � �ω, r2 = rT and r3 =
rS (J � �ω, r2 = rs , and r3 = rT ). The dissociation rate
coefficient d is assumed to be spin independent. In the energy
eigenbasis, the stochastic annihilation term San[ρ̂] has matrix
elements in a convenient form {San[ρ̂]}ij = (ri + rj + 2d) ρij

2 .
We also assume pair generation only creates pairs in an energy
eigenstate {Scr[ρ̂]}ij = δij

k
4 , where k is the net generation rate

of all four states. This creation term is the only inhomogeneous
contribution to Eq. (5). In this paper, we neglect the Redfield
relaxation matrix, an assumption that is valid in the short-
time regime (τ < 1

rS
∼ T2 < 1

rT
� T1). For the purpose of

obtaining sufficient resolution, some pulse lengths violate this
assumption [see Figs. 1(d) and 1(g)].

III. ANALYTICAL AND NUMERICAL METHODS

In the following section, we outline our study of the
observable Q(τ ) that results from the coherent excitation of the
spin pair. Equation (5) is a set of 16 coupled inhomogeneous
ordinary differential equations (ODEs) that were previously
solved using a Runge-Kutta or comparable ODE solver.17–19

These computationally intensive methods make the convolu-
tion of distributions of many parameters (J , D, bandwidth of
pulse, etc.) impractical without a supercomputer. We use two
techniques that lead to a significant decrease in computation
time. In Sec. III A, we detail the first step of the computation,
a transformation into the rotating frame.

Once in the rotating frame, several limiting cases of the
Rabi nutation frequencies are demonstrated in Sec. III B. The
limiting cases of overall weak coupling, strong exchange
coupling, strong dipolar coupling, and a large difference in
dipolar and exchange coupling are described. Section III A

also includes an analytical description of the
√

2γB1 Rabi
frequency component that occurs in the presence of strong
dipolar coupling. These limiting cases provide significant
insight into qualitative features observed in the numerically
calculated general cases, such as resonance location, Rabi
frequency, and signal amplitude.

In addition to the use of the rotating frame, the calculation
of the time-dependent change of the density matrix was aided
by the use of Liouville-space formalism, and is discussed in
Sec. III C. A direct consequence of this formalism is that the
inhomogeneous stochastic Liouville equation is cast into a
readily tractable and solvable form. Compared to previous
work,17,18 the speed of the simulation allows us to perform
a larger and more detailed study of Q(τ )’s dependence on
dipolar D and exchange J interactions with respect to the
Larmor frequency separation �ω and the excitation-field
strength B1.

In Sec. IV, representative results of these simulations are
given and discussed. Using the methods from Sec. III, we
simulate Q(τ ) for a range of values D and �ω with a fixed
excitation field B1. Then, Q(τ ) is simulated as a function of
D and J with a fixed �ω and B1. Finally, Q(τ ) is simulated
with small and large exchange coupling strengths, along with
a complete Pake distribution of dipolar interaction strengths.

A. Rotating-frame stochastic Liouville equation

The rotating frame corresponds to a transformation of the
Hamiltonian from the energy eigenbasis: ĤR = R†ĤenR. The
rotating-frame density matrix is then given by ρ̂R = R†ρ̂R.

Here, R = R
1
2
z ⊗ R

1
2
z is the 4 × 4 spin- 1

2 pair rotation operator,

and R
1
2
z is the rotation operator for a spin- 1

2 state around
the ẑ axis by an angle ωt . The resulting rotating-frame
Hamiltonian is

ĤR = h̄

2

⎛
⎜⎜⎜⎜⎝

2ω0 − J
2 − D γB1[cos(φ) − sin(φ)] γB1[cos(φ) + sin(φ)] 0

γB1[cos(φ) − sin(φ)] J
2 + D +

√
�ω2 + (J − D)2 0 γB1[cos(φ) − sin(φ)]

γB1[cos(φ) + sin(φ)] 0 J
2 + D −

√
�ω2 + (J − D)2 γB1[cos(φ) + sin(φ)]

0 γB1[cos(φ) − sin(φ)] γB1[cos(φ) + sin(φ)] −2ω0 − J
2 − D

⎞
⎟⎟⎟⎟⎠ ,

(8)

and has no explicit time dependence. Note that the energy
levels for the energy eigenbasis E1, E2, E3, and E4 reside
on the diagonal. We label the average of the spin-pair
Larmor frequencies ω0 = (ωa + ωb)/2 and Larmor frequency
separation �ω = ωa − ωb. We assume that the Rabi frequency
of each spin is the same (γaB1 ≈ γbB1), allowing us to
explicate the results in terms of a single on-resonance Rabi
frequency γB1. Neglecting the very small difference in the
individual spin-Rabi frequencies symmetrizes the simulations
about ω − ω0 = 0, rather than demonstrating an inconse-
quential asymmetry. After an additional time-independent
term F̂ = R†∂tR is absorbed into an effective Hamiltonian
Ĥ = ĤR − F̂ , the rotating-frame stochastic Liouville equation

becomes

∂t ρ̂R = i

h̄
[ρ̂R,Ĥ ] + S[ρ̂R]. (9)

As expected from this transformation, the only term left with
time dependence in Eq. (9) is the rotating-frame density
matrix ρ̂R .

B. Limiting cases of the Rabi frequencies

Useful equations that elucidate limiting cases can be derived
from finding the single-transition Rabi frequencies of the
rotating-frame Hamiltonian given in Eq. (8). By considering
an induced transition between only two of the available four
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states and solving a 2 × 2 eigenvalue problem, it can be shown
that the single-transition Rabi frequencies are

�ij =
√

(1 ∓ sin 2φ)(γB1)2 + (ω − ωij )2. (10)

The negative sign in the first term under the radical on
the right-hand side gives the Rabi frequencies for the
|T±〉 ↔ |2〉 transitions between the pure triplet states and
|2〉 state [(i,j ) = {(T+,2); (T−,2)}]. The plus sign in Eq. (10)
gives the Rabi frequencies for the |T±〉 ↔ |3〉 transitions
between the pure triplet states and |3〉 energy eigenstate
[(i,j ) = {(T+,3); (T−,3)}]. In general, there are four resonant
frequencies, ωij = (Ei − Ej )/h̄. If an on-resonant excitation
frequency ω is applied such that ω = ωij , the second term
under the radical in Eq. (10) vanishes.

1. Weak and effectively weak coupling

For the first limiting case, let the coupling terms J and D

approach zero. In this weak-coupling regime |J | + |D| � �ω,
the first term in Eq. (10) tends towards the limit (1 ∓
sin 2φ) → 1 and there is only an on-resonance Rabi oscillation
frequency of a single uncoupled spin γB1. There are two
resonant transitions with a twofold degeneracy corresponding
to the Larmor frequency of each spin in the pair. If there is
a sufficient excitation-field strength B1, both uncoupled spins
will nutate coherently, creating a spin-beating effect with a
2γB1 Rabi frequency component.8,27 If the Larmor separation
�ω is zero (indicating that the gyromagnetic ratios of the
electron and the hole are the same), there is only one transition
that has a degeneracy of four and a Rabi frequency γB1.

For the second limiting case, consider an effectively weak
coupling, where the difference in coupling strengths becomes
much less than the Larmor separation |J − D| � �ω. In this
limit, there are four nondegenerate resonant transitions. As in
the weak regime, a pair in the effectively weak regime has a
Rabi frequency γB1 equal to that of a single uncoupled spin.

Both weak and effectively weak coupling leave the energy
eigenbasis completely unaffected by the rotation performed
in Eq. (3). In the latter case, this happens even though the
couplings J and D could individually be quite large compared
to �ω. However, the resonance frequencies for each transition
will be shifted due to the increased coupling strengths. This
nondegenerate energy spectrum distinguishes the effectively
weak coupling from weak coupling (see Fig. 3).

2. Strong dipolar coupling

Now consider the limiting case of strong dipolar coupling
|D| � |�ω|, with no exchange coupling J = 0. As D gets
large, sin 2φ → −1, and the four resonant single-transition
frequencies, offset from ω0, are approximately

ω±,2 ≈ ±
(

3D

2
+ �ω2

4D

)
, ω±,3 ≈ ±

(
D

2
− �ω2

4D

)
. (11)

The first term under the radical on the right-hand side
of Eq. (10) is (1 − sin 2φ) → 2 for the |T±〉 ↔ |2〉 transi-
tions, and (1 + sin 2φ) → 0 for the |T±〉 ↔ |3〉 transitions.
Therefore, strong dipolar coupling within the pair yields an
on-resonance Rabi frequency of

√
2γB1 for each transition

between the pure triplet states and the |2〉 state. The T± ↔ |2〉

transition probabilities are large but have an overall reduction
of the pEDMR/pODMR signal, owing to the strong triplet
character of the |2〉 state.

We predict a
√

2γB1 Rabi frequency for any spin- 1
2 pair

with sufficient Larmor separation and strong enough dipolar
coupling. When strongly coupled, an applied excitation neces-
sarily affects both spins in a pair, even if only a monochromatic
excitation is applied. The strong dipolar coupling (like a strong
exchange coupling18) allows one to access only the quantum
state, and prohibits isolating an individual spin within the spin
pair. This behavior has been well known from traditional
magnetic resonance spectroscopy15,28 and, without explicit
theoretical proof, it has already been applied to experimental
pODMR (Refs. 29 and 30) and pEDMR (Refs. 30 and 31)
data.

3. Strong exchange coupling

We now consider the strong exchange coupling regime,
where |J | � |�ω|, with no dipolar coupling D = 0. As J

gets large, sin 2φ → 1, and the resonant single-transition
frequencies, offset from ω0, are approximately

ω±,2 ≈ ±
(

J + �ω2

4J

)
, ω±,3 ≈ ∓�ω2

4J
. (12)

The first term under the radical on the right-hand side of
Eq. (10) is (1 + sin 2φ) → 2 for the |T±〉 ↔ |3〉 transitions,
and (1 − sin 2φ) → 0 for the |T±〉 ↔ |2〉 transitions. The
single-transition analysis predicts a

√
2γB1 Rabi frequency

for the |T±〉 ↔ |3〉 transitions. However, this naive analysis
does not take into account that the splitting in the |T±〉 ↔ |3〉
transition frequencies is so small that the transitions will be
driven simultaneously by B1. Therefore, Eq. (10) is no longer
valid, and a multiple-transition analysis must be used. The
|T±〉 ↔ |2〉 transitions are far away from ω0 and have Rabi
frequencies approaching zero. Because of this, the strong
exchange coupling regime can be analyzed using only the
|T±〉 ↔ |3〉 transitions. If an excitation frequency of ω = ω0 is
applied, two of the three rotating-frame energy eigenvalues in
the multiple-transition analysis are degenerate. This simplifies
the eigenvalue problem significantly, and the (three-state) Rabi
frequency is found to be

� =
√

�ω2

4J
+ 2(1 + sin 2φ)(γB1)2 ≈ 2γB1 (13)

for the |T+〉 ↔ |3〉 ↔ |T−〉 transition. We note that the single-
transition Rabi frequencies for |T±〉 ↔ |3〉 do not merely
add to a total 2

√
2γB1 Rabi frequency. An in-depth, more

general analytical treatment of these multiple-transition Rabi
frequencies is given in Ref. 21.

If the power of the excitation field is lowered, only a
γB1 Rabi frequency is seen in the case of uncoupled pairs,
whereas a strongly exchange coupled pair always has a 2γB1

component, provided the signal is strong enough. This fact
has served to distinguish uncoupled and strongly exchange
coupled states in experimental studies.8,27

4. Large difference in exchange and dipolar strengths

The final limiting case we consider is to take the difference
in coupling strengths to be large with respect to the separation

165204-4



NUMERICAL STUDY OF SPIN-DEPENDENT TRANSITION . . . PHYSICAL REVIEW B 87, 165204 (2013)

of the Larmor frequencies, and the exchange strength to be
greater than the dipolar strength J − D � �ω. In this limit,
we have (1 − sin 2φ) → 0 for the |T±〉 ↔ |2〉 transitions, and
(1 + sin 2φ) → 2 for the |T±〉 ↔ |3〉 transitions. The resonant
single-transition frequencies, offset from ω0, are now

ω±,2 ≈ ±
(

J + D

2
+ �ω2

4(J − D)

)
,

(14)

ω±,3 ≈ ±
(

3D

2
− �ω2

4(J − D)

)
.

The presence of dipolar coupling splits the transition frequen-
cies enough that the single-transition analysis for Eq. (8)
becomes valid again. Therefore, in the limit of a large
difference in dipolar and exchange coupling strengths, a Rabi
frequency of

√
2γB1 will occur when on resonance with the

|T±〉 ↔ |3〉 transitions, and the |T±〉 ↔ |2〉 transitions have a
vanishingly small transition probability.

The other limit in the strong-coupling regime that we do not
describe in detail is the difference in coupling strengths large
with respect to the separation in Larmor frequencies, with
dipolar strength greater than the exchange strength D − J �
�ω. An analysis similar to that given above shows that the√

2γB1 Rabi frequency components exist, but have resonances
far away from the central average ω0 of the spin-pair Larmor
frequencies.

We will refer to these limiting cases as we discuss the
features appearing in the results of the following simulations.

C. Liouville-space formalism

We now reformulate the rotating-frame description us-
ing Liouville operator space, also known as superoperator
formalism,32,33 to increase the computational power of the
simulation. This technique was also used recently in a model
for magnetic-field effects in disordered semiconductors.34 The
essence of this reformulation is the representation of the state
population as a 16 × 1 column vector ρ instead of the typical
4 × 4 density matrix ρ̂. Operations involving Â are associated
with corresponding superoperators A. Note that this formalism
produces no new physics, but simply recasts the problem such
that a convenient, tractable solution to Eq. (9) is obtained.

Using superoperator formalism, the rotating-frame inho-
mogeneous stochastic Liouville equation [Eq. (9)] can be
rewritten in the compact form

∂tρR = i

h̄
HρR + SanρR + K = GρR + K. (15)

Here, HρR is the abbreviated superoperator form of the
commutator [ρ̂R,Ĥ ]. H is a 16 × 16 superoperator that can
be written as

H =

⎛
⎜⎜⎜⎝

Ĥ − IH11 IH12 IH13 IH14

IH21 Ĥ − IH22 IH23 IH24

IH31 IH32 Ĥ − IH33 IH34

IH41 IH42 IH43 Ĥ − IH44

⎞
⎟⎟⎟⎠ ,

(16)

where I is the 4 × 4 identity matrix and Hij are the matrix
elements of the 4 × 4 Hamiltonian Ĥ . In Eq. (15), San is a

time-independent diagonal 16 × 16 matrix of the appropriate
stochastic annihilation terms corresponding to San[ρ̂]. The
creation term K is a time-independent 16 × 16 matrix con-
sisting of the appropriate stochastic creation/generation terms
corresponding to Scr[ρ̂] and is the sole inhomogeneous part of
Eq. (15). The superoperator G is merely the addition of i

h̄
H

and San; it is a symmetric and relatively sparse matrix with
160 zeros.

A steady-state density matrix ρS is used to define ρ(0), the
density matrix at time t = 0, and is obtained by neglecting
the coherent excitation (B1 = 0) and finding a steady-state
superoperator GS from Eq. (15). Using the variation-of-
parameters method, the ODE in Eq. (15) is solved analytically
by

ρR(t) = eGt [ρ(0) + G−1K] − G−1K,
(17)

ρ(0) = G−1
S K,

where ρ(0) is the initial density matrix and eGt is the time-
evolution superoperator for the density matrix.

Calculating the exponential eGt for a large number of time
steps is computationally intensive, but we simplify by selecting
a time-step resolution tstep and using an iterative process

ρR(n ∗ tstep) = (eG∗tstep )n[ρ(0) + G−1K] − G−1K. (18)

One exponential is calculated for each selection of parameters
in G (including excitation frequency ω), and the problem
is reduced to many matrix multiplications. In addition to
calculating the matrix exponential, an inverse matrix must also
be calculated to solve Eq. (17). (These two calculations prevent
a general analytic solution and consume the most computa-
tional time.) The inverse of the steady-state superoperator GS

needs to be computed once for each selection of parameters,
excluding the excitation frequency ω.

Using these techniques, we decrease the computation time
of ρ̂(t) by three orders of magnitude compared to the con-
ventional ODE solvers that were used in previous studies.17–19

This makes the simulation of complex distributions possible.
For example, the data of Figs. 2 and 4 are superpositions
of 2880 separate simulations generated at a resolution that
would be impractical using conventional ODE solvers on a
standard personal computer. We first verified the Liouville-
space technique by successfully generating the uncoupled
and exchange coupled simulations previously generated using
ODE solvers.17,18 Then, the simulations obtained for dipolar
coupled pairs (see Figs. 1 and 3) are corroborated by ODE-
based simulations (e.g., MATLAB R© solver ODE113). From our
simulations, it is possible to describe the nature of the coupling
within the pair that leads to experimentally observed spin-
dependent transport and recombination processes.

IV. RESULTS AND DISCUSSION

The simulations are used to generate a representative
database of different coupling strengths and Larmor sepa-
rations. Specifically, we discuss dipolar coupling within the
intermediate-spin-pair model to account for

√
2γB1 Rabi fre-

quencies of experimental pODMR/pEDMR data in disordered
semiconductors.29–31 However, we find that dipolar coupling
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alone does not account for certain data; exchange coupling
must also be included.

For each of the simulations, a set of global parameters
is used. Evolving ρ̂(τ ) during the application of a 2-μs
excitation pulse, we calculate the observable Q(τ ) with a
4001-step resolution for a range of pulse frequencies ω, where
the range of ω is covered with an 801-step resolution. We
choose ω0/2π = 10 GHz (within the microwave X band)
with the Larmor separation �ω centered on this value. For all
simulations, we also choose a B1 strength such that γB1/2π =
10 MHz. The rate coefficients for singlet recombination,
triplet recombination, and dissociation were assigned values
of r−1

S = 1 μs, r−1
T = 100 μs, and d−1 = 1 ms, respectively.

We note that for all simulations presented in this study,
the singlet and triplet recombination parameters rS and rT ,
respectively, were kept at these constant values. This is
done despite the expectation that for any given pair system,
these rate coefficients (which represent the transition matrix
elements for the electronic pair decay rates) also possess strong
implicit dependencies on the intrapair exchange coupling J .
However, this effect is not the focus of this study as it will
always depend on the electronic wave function of the two
pair partners and, thus, on the physical nature of any given
spin-pair implementation. By keeping rS and rT independent
of J in this simulation, we can assess the decay of the EDMR
signal magnitude that is due to the exchange and dipolar
coupling induced shift of the spin-pair eigenstates toward the
singlet/triplet basis. All scales of the EDMR signals presented
in the following compare to the maximum relative intensities of
entirely uncoupled spin pairs. To ensure all singlet information
is recorded after the excitation, the observable [Eq. (4)] is
integrated up to a time t0 = 4r−1

3 , with r3 defined in Eq. (6).
This is done to offset the effects of the inherent signal reduction
that arises as the exchange or dipolar coupling strength is
increased. The generation rate k is chosen such that the initial
(steady-state) pure-triplet populations of the density matrix
are approximately 0.05 [ρS

11(0) = ρS
44(0) ≈ 0.05 in the 4 × 4

representation].
All values are taken to be representative of measurement

conditions that can be realized in the laboratory, following
Ref. 18. Important physical information garnered from the
simulations are the relative positions and amplitudes of
the Rabi frequency components � and their dependence on
the different coupling strengths.

A. Dipolar coupling only

Here, we vary the dipolar coupling strength D with respect
to the Larmor separation �ω, with a negligibly small exchange
interaction J . Displayed in Fig. 1 are simulations with Larmor
separations of �ω/2π = 1, 10, and 40 MHz; mapped against
dipolar coupling strengths D/2π = 1, 10, and 50 MHz. These
are chosen as representative values of �ω/2π and D/2π

(smaller, equal, and larger) relative to the excitation-field
strength γB1/2π = 10 MHz. General features of these data
include the resonance curves at γB1,

√
2γB1, and 2γB1,

which appear variously as a function of �ω/2π and D/2π .
The prominent vertical lines in Figs. 1(d) and 1(g) result
from extremely long integration times compounded with the
continuous rotation into “leaky” singlet states.

Weak dipolar coupling (D/2π = 1 MHz) is shown in the
top row of Figs. 1(a)–1(c); we reproduce qualitative features
of the weakly coupled pair discussed in Ref. 17. (The small
differences from an uncoupled pair are the result of a slight
splitting of the resonances caused by weak dipolar coupling.)
All plots in the top row of Fig. 1 have on-resonance single-
transition Rabi frequencies of γB1. The multiple-transition
Rabi frequencies arise from simple addition and subtraction
of the single-transition Rabi frequencies (see Ref. 17). Thus,
a weak-dipolar regime leads to no measurable

√
2γB1 Rabi

frequency components. Figure 1(a) has an on-resonance
Rabi frequency of 2γB1 due to a spin-beating effect from
the coherent nutation of both spins.17,27 Also, the intensity
in Fig. 1(a) is approximately half that of Fig. 1(c); this
results directly from the relative triplet/singlet content of
the eigenbasis in Eq. (3). The middle row of Fig. 1 has an
intermediate-dipolar strength (D/2π = 10 MHz = γB1) and
no strong

√
2γB1 Rabi frequency components. Indeed, this√

2γB1 component is barely visible in Fig. 1(d), much weaker
than the bright vertical lines.

Strong dipolar coupling (D/2π = 50 MHz) is shown in
the last row of Fig. 1. When the Larmor separation is less
than the dipolar strength �ω < γB1 < D [Fig. 1(g)], there is
a weak nonvisible (due to bin size) transition with a

√
2γB1

Rabi frequency. Both Figs. 1(h) and 1(i) show a strong
√

2γB1

Rabi frequency component. Figure 1(h) has a dipolar coupling
strength greater than the Larmor separation, and both are
greater than or comparable to the excitation strength D >

(�ω ≈ γB1). Figure 1(i) has a Larmor frequency separation
and dipolar coupling strength approximately equal, but both
greater than the excitation strength (�ω ≈ D) > γB1. Thus,
a Rabi frequency of

√
2γB1 only occurs in the regime where

dipolar coupling strength is greater than both the Larmor
separation and the excitation strength D � �ω, D > γB1.
The limits of this regime are discussed in Sec. III B2.

Each column of Fig. 1 reflects the observable intensity
getting weaker with increasing dipolar coupling strength; this
is because the spin pair is approaching a triplet-singlet energy
eigenbasis. Another trend occurring down each column is
the separation of the on-resonance positions increasing with
dipolar coupling strength, also demonstrated with Eq. (11).

We turn now to modeling a more realistic pEDMR/pODMR
signal. We operate in a regime of strong

√
2γB1 Rabi compo-

nents and seek to model an actual spin-pair distribution in a
disordered material. Indeed, many materials with pronounced
spin-selection rules are disordered semiconductors, including
those for which the significance of the dipolar interaction
has been discussed.29–31 In a disordered environment, the
orientation of a spin pair with respect to an applied magnetic
field can be entirely random. The strengths of the dipolar fields
are highly orientation dependent because of the inherently
anisotropic spin-dipolar interaction, even if a fixed spin-pair
distance is considered (rather than a distribution of distances).
The well-known Pake distribution accounts for this random
orientation.35 Figure 2 is a simulation using a Pake distribution
with a dipolar coupling strength of D/2π = 80 MHz, a Larmor
separation of �ω/2π = 40 MHz, and J = 0. Figure 2(a) is
created using a 2880-point Pake distribution convolved with
a 10-MHz full width at half-maximum (FWHM) Lorentzian
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FIG. 1. (Color online) Plots of the fast Fourier transform FFT{Q(τ )} of the observable Q(τ ) as a function of the excitation frequency
ω, in the regime of dipolar coupling only. The signal intensity for each plot is normalized to plot (c) and given by the number next to the
color scale, which indicates the highest magnitude signal intensity in the scale for that plot. Simulations are done with Larmor separations of
�ω/2π = 1 MHz [(a), (d), and (g), left column], �ω/2π = 10 MHz [(b),(c), and (h), center column], and �ω/2π = 40 MHz [(c), (f), and (i),
right column]; mapped against dipolar coupling strengths of D/2π = 1 MHz [(a)–(c), first row], D/2π = 10 MHz [(d)–(f), second row], and
D/h = 50 MHz [(g)–(i), third row]. The excitation strength is γB1/2π = 10 MHz.

function to account for power broadening due to the excitation
pulse. We then generate simulations for the 2880 dipolar
coupling strengths and, using relative weights from Fig. 2(a),
average those simulations to make Fig. 2(b).

A comparison of Fig. 2(b) with experimental pEDMR and
pODMR data29–31 strongly supports the notion that the strong
transitions with a Rabi frequency of

√
2γB1 arise from a

strong dipolar interaction. However, other characteristics of
Fig. 2(b) do not match experimental data. The strong low Rabi
frequency components (≈ 0.4γB1) of Fig. 2(b) are not seen
in pODMR of hydrogenated amorphous silicon (a-Si:H), as
seen in Fig. 8 of Ref. 29 or Fig. 1(a) of Ref. 30. Low Rabi
frequency components (≈ 0.1–0.2γB1) are seen in pEDMR
of hydrogenated amorphous silicon nitride (a-SiNx :H), given
in Fig. 2(e) of Ref. 31. However, the same data also show a√

2γB1 Rabi frequency relatively flat with respect to excitation
frequency compared to the curved shape in Fig. 2(b). From

these discrepancies, we conclude that dipolar coupling alone
can not account for the pODMR/pEDMR data reported in the
literature.

B. Dipolar and exchange coupling

We now introduce exchange coupling between the spin
pairs in addition to the dipolar coupling. The parameter
space for the simulation is quickly growing; we give a small
representation in Fig. 3.

Figure 3 has plots of the fast Fourier transform FFT{Q(τ )}
of the observable Q(τ ) as a function of the excitation frequency
ω. The signal intensity for each plot is normalized to plot (a)
and given by the number next to the color scale, which indicates
the highest magnitude signal intensity in the scale for that plot.
Simulations are done with a Larmor separation of �ω/2π =
40 MHz. Dipolar coupling strengths are D/2π = 0 [Figs. 3(a),
3(e), 3(i), 3(m), 3(q), first column], D/2π = 10 MHz
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FIG. 2. (Color online) (a) The distribution of dipolar coupling
strengths for the simulation shown in (b). The distribution is a
Pake doublet with Larmor separation �ω/2π = 40 MHz and dipolar
coupling strength of D/2π = 80 MHz convoluted with a Lorentzian
with a half-width of 10 MHz. (b) Plot of the fast Fourier transform
FFT{Q(τ )} of the observable Q(τ ) as a function of the excitation
frequency ω. The signal intensity is normalized and given by
the number next to the color scale, which indicates the highest
magnitude signal intensity. The simulation uses the distribution in
Fig. 2(a), with no exchange coupling J = 0. The excitation strength
is γB1/2π = 10 MHz.

[Figs. 3(b), 3(f), 3(j), 3(n), 3(r), second column], D/2π =
40 MHz [Figs. 3(c), 3(g), 3(k), 3(o), 3(s), third column],
D/2π = 80 MHz [Figs. 3(d), 3(h), 3(l), 3(p), 3(t), fourth
column]; mapped against exchange coupling strengths of
J/2π = 0 [Figs. 3(a)–3(d), first row], J/2π = 10 MHz
[Figs. 3(e)–3(h), second row], J/2π = 50 MHz [Figs. 3(i)–
3(l), third row], J/2π = 80 MHz [Figs. 3(m)–3(p), fourth
row], J/2π = 300 MHz [Figs. 3(q)–3(t), fifth row]. With the
exception of Fig. 3(a), dipolar and exchange coupling strengths
are chosen greater than or equal to the excitation strength
γB1/2π = 10 MHz.

Figure 3(a) is an uncoupled spin pair that satisfies the weak-
coupling limit described in Sec. III B1; two resonances are
located at the Larmor frequencies of the electron and hole and
have Rabi frequencies of γB1. The uncoupled spin pair yields
the maximum relative intensity (100) in Fig. 3. Figures 3(f) and
3(p) are in the effectively weak-coupling limit also described in
Sec. III B1, where the dipolar and exchange coupling strengths
are equal (J = D). Figure 3(k) has approximately equal
dipolar and exchange coupling strengths with on-resonance
Rabi frequencies slightly offset from γB1.

The first row of Fig. 3 is similar to the third column
of Fig. 1; there is no exchange interaction present and the
relative intensity of FFT{Q(τ )} decreases with increasing

dipolar coupling strength. The distribution in Fig. 2(b) can
be thought of as generated from intermediate values between
and including Figs. 3(a)–3(d). The sequence across the first
row of Fig. 3 best illustrates the discussion in Sec. III B2; the
two |T±〉 ↔ |2〉 transitions are split from the center frequency
ω0 and trend upwards to the strong dipolar coupling limit with
a

√
2γB1 Rabi frequency. The two |T±〉 ↔ |3〉 transitions are

also split from the center frequency but are approaching their
strong-coupling limit (zero Rabi frequency).

As discussed in the strong exchange coupling limit of
Sec. III B3, the single-transition analysis fails to account for
the observed Rabi frequencies; this is explicitly seen down
the first column of Fig. 3, for the two |T±〉 ↔ |3〉 transitions.
Indeed, the observed frequencies are not

√
2γB1 and 0 as

would be obtained from Eq. (10); multiple transitions must be
considered to obtain the correct values. The intricate details
of the resonance positions and strengths near ω − ω0 = 0
with strong exchange coupling and finite dipolar coupling
strength [best seen in Figs. 3(j), 3(n), and 3(r)] are described
analytically in Ref. 21. As shown by comparing Figs. 5
and 6 in Ref. 21, these details can be predicted exactly
for this regime. The first column in Fig. 3 is an extension
of the simulations shown in the third column of Fig. 2 in
Ref. 18, where the exchange interaction is considered without
the dipolar interaction. With increasing exchange coupling
strength, the |T±〉 ↔ |2〉 transitions are split further about ω0,
while the |T±〉 ↔ |3〉 on-resonance frequency positions remain
unaffected. This is seen down each column of Fig. 3 and from
Secs. III B3 and III B4. The role dipolar coupling plays is
shown by a common trend throughout all rows of Fig. 3. An
increase of dipolar coupling strength creates a greater energy
splitting, causing a particular transition to tend further from
ω0 and making the single-transition analysis of Eq. (10) valid.
Therefore, a

√
2γB1 Rabi frequency is present if the dipolar

coupling is strong enough. From these general trends, we
determine that only the combination of strong dipolar and even
stronger exchange [see Figs. 3(r)–3(t)] yields strong

√
2γB1

Rabi frequency components without any strong low-frequency
(0-γB1) components.

Using this analysis, we generate Fig. 4(b), which shows a
distribution simulation similar to that of Fig. 2(b) but with a
strong exchange coupling. This distribution samples from the
regime where there is a large difference between exchange
and dipolar coupling strengths with J > D > �ω > γB1,

(J − D)2 � �ω2. Figure 4(b) has a flat Rabi frequency
of

√
2γB1 and exhibits no strong low Rabi frequency

components. It also exhibits some 2γB1 components. These
same characteristics are found in the experimental data of
Refs. 29–31.

The pODMR data of a-Si:H in Fig. 8 of Ref. 29 is almost
identical to Fig. 4(b), showing strong

√
2γB1 Rabi frequency

components, weak components around 2γB1, and no low-
frequency components. Thus, our spin-pair model predicts
that both dipolar and exchange coupling are responsible for
the pODMR data of Ref. 29. Moreover, the simulations show
that the relative coupling strengths present in these data are
in a regime with a large difference in exchange and dipolar
coupling strengths, with J > D. This analysis supports the
discussion presented in Ref. 29 that suggested dipolar coupling
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FIG. 4. (Color online) (a) The distribution of dipolar coupling
strengths for the simulation shown in (b). The distribution is a
Pake doublet with Larmor separation �ω/2π = 40 MHz and dipolar
coupling strength of D/2π = 80 MHz convoluted with a Lorentzian
with a half-width of 10 MHz. (b) Plot of the fast Fourier transform
FFT{Q(τ )} of the observable Q(τ ) as a function of the excitation
frequency ω. The signal intensity is normalized to Fig. 2(b) and given
by the number next to the color scale, which indicates the highest
magnitude signal intensity. The simulation uses the distribution in
Fig. 4(a), with an exchange coupling strength of J/2π = 300 MHz.
The excitation strength is γB1/2π = 10 MHz.

was the cause for the observed data; it further predicts that
strong exchange coupling was also present.

The pODMR of a-Si:H geminate pairs in Fig. 3(a) of Ref. 30
is also very similar to the simulation in Fig. 4(b), with the
caveat that there appears to be the presence of weakly coupled
spins that produce strong γB1 Rabi frequencies. In that data
set, the strong transitions with a Rabi frequency of

√
2γB1

are flat with respect to excitation frequency but become
abruptly weaker; this is characteristic of the Pake distribution
in Fig. 4(b) which also has a strong

√
2γB1 component

becoming abruptly weaker at an excitation frequency of
(ω − ω0)/γB1 = 10. These experimental data also have no
lower Rabi frequency components (0-γB1), which we have
shown to be a defining characteristic of the regime in which
there is a large difference in exchange and dipolar coupling
strengths with J > D. Therefore, we determine that the
geminate pairs show the characteristics of weakly coupled
pairs mixed with strongly dipolar coupled pairs discussed in

Ref. 30, but we also predict the presence of a strong exchange
coupling.

Finally, the pEDMR data in Fig. 3(e) of Ref. 31 show
broad

√
2γB1 Rabi frequency components and weak γB1 Rabi

frequency components. Again, this could be characteristic of a
resonance involving mostly uncoupled pairs and some strong
exchange and dipolar coupled pairs. However, the presence of
both strong dipolar and exchange coupling can not explain the
strong low-frequency (≈0.2γB1) components present in the
Ref. 31 data. Perhaps the curvature leading to the

√
2γB1

limit seen in Fig. 2 can not be seen in the Ref. 31 data
because of a low number of dipolar coupled pairs. However,
if the strong low-frequency components are due to strong
dipolar coupling alone, we would expect (from Fig. 2) that the√

2γB1 component would be as strong as the low-frequency
component, and the data do not have this feature. Therefore,
we conclude that dipolar coupled pairs can explain the

√
2γB1

Rabi frequencies in the a-SiNx :H data presented in Ref. 31, but
whether exchange is present can not be confirmed or rejected
due to the weak signal strength of the strongly coupled pairs
relative to the uncoupled pairs in that data.

V. SUMMARY AND CONCLUSION

Numerical and analytical methods were used to investigate
the role of the dipolar interaction for electrically and opti-
cally detected Rabi oscillation frequencies of intermediate-
spin-pair systems. A general description of the physics of
pEDMR and pODMR transient-nutation experiments was
given that includes dipolar and exchange interactions, the
Larmor separations within the intermediate pairs, and the
excitation-field strength. We have presented a intermediate-
spin-pair model that corroborates previous numerical studies
that included weakly coupled pairs only17,27 and exchange
coupled pairs only.18 The model also supports experimen-
tal studies that attributed the observation of

√
2γB1 Rabi

frequency components with pODMR/pEDMR of disordered
semiconductors29–31 to the presence of strong dipolar coupling
within the spin-pair model. We have shown that pODMR data
of a-Si:H presented in Refs. 29 and 30 can be explained
within an intermediate-pair model in the regime of strong
dipolar coupling and stronger exchange coupling (J − D)2 �
�ω2, J > D > �ω > γB1.
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