Dipolar and scalar ³He-¹²⁹Xe frequency shifts in mm-sized stemless cells

arxiv.org/abs/1805.11578

DAMOP 2018, Ft. Lauderdale (Thurs. May 31, 2:48, Grand F)

Mark Limes, Nezih Dural, Mike Romalis, Princeton University

Elizabeth Foley, Tom Kornack, Allan Nelson &

Larry Grisham, Twinleaf LLC

Dual Nuclear-spin Comag. detection

Resonant

Light source (pump)

• SQUIDs: Good sensitivity H06 : 9 Terrano, Meinel, Sachdeva, Chupp Detects dipolar field of ³He-¹²⁹Xe outside sphere

Heil, et al., Ann. Phys. (Berlin) 525 (2013), etc.!

10,000

Budker, Romalis, Nature Physics, 3 (2007)

D. Sheng, A. Kabcenell, and M.V. Romalis. Phys. Rev. Lett. 113, 163002 (2014) T. W. Kornack, R. K. Ghosh and M. V. Romalis. Phys. Rev. Lett. 95, 230801 (2005)

• Alkali Magnetometer

Light source

(probe)

S08 : 2 Thrasher, Sorensen, Weber, Korver, Walker

M. V. Romalis and G. D. Cates, *Phys. Rev. A* **58**, 3004 (1998) Z. L. Ma, E. G. Sorte, and B. Saam, *Phys. Rev. Lett.* **106**, 193005 (2011)

Gist
$$\Delta \omega_{\text{NG}} \propto -\kappa_0 [\text{Rb}] \langle S_z \rangle$$
 $(\kappa_0)_{\text{RbHe}} = 5$ $(\kappa_0)_{\text{RbXe}} = 500$

- We need to mitigate differential frequency shifts due to polarized Rb!
- 1) Pulse-train ⁸⁷Rb magnetometer -> High SNR Detection of ³He-¹²⁹Xe
- 2) Ramsey scheme with rotating ⁸⁷Rb pulse train -> Precise + Accurate

Dipolar fields (NMR shape effect) arxiv.org/abs/1805.11578

• Spherical cells null classical dipolar fields

-Glass blown spheres imperfect, stems need plugged

• There also exists a *cylinder size* h/d = 0.9065, dipolar effect vanishes!

-Anodically bonded cells have very well-defined geometries

$$B_{dip}(\hat{r}) = \frac{3\hat{r}(\hat{r} \cdot m) - m}{r^3}$$
$$B_{con} = \frac{8\pi\kappa}{3}M_{He}$$

uniform density of dipoles, n=M/m

Dipolar fields (NMR shape effect)

arxiv.org/abs/1805.11578

• Experiment: Vary projection of ³He M on B₀, and vary cell size

$$f_r - \gamma_r = \frac{\omega_{He}}{\omega_{Xe}} - \frac{\gamma_{He}}{\gamma_{Xe}}$$

For different cell sizes, anodically bond with graded silicon wafers, Get cells with sizes about h/d = 0.9065

Experiment

arxiv.org/abs/1805.11578

• Vary projection of ³He M on bias field BO axis

Field experienced due to M_{He} v. orientation arxiv.org/abs/1805.11578

• Plot slopes v. cylinder dimension with B0 perp and para to cylinder axis

Field experienced by ³He due to M_{He} v. cylinder size

Field experienced by ¹²⁹Xe due to M_{He} v. cylinder size

- h/d = 0.9065 is a cylinder where the dipolar field should vanish
- Theory with one free parameter
- ¹²⁹Xe shifted...
- Independent of Rb density

¹²⁹Xe experiences scalar field from ³He

• h/d = 0.9065 is a cylinder where $-\Delta$ He B_0 II 0.4 the dipolar field should vanish O→ Xe B₀ II B_0 . --**□**- He *B*₀⊥ 0.3 --**☆**- Xe *B*₀⊥ • Theory with one free parameter 0.2 • ¹²⁹Xe shifted... 0.1 BHe BHe Independent of Rb density $8\pi(\kappa_0)_{\text{HeXe}}$ • $B_{dipole} + B_{contact}!$ -0.2 $\kappa_{\text{HeXe}} = -0.011 \pm 0.001$ Rb number density 10¹² cm⁻³--0.3 20 30 50 40 $B_0 I$ B_{He}∕M_{He} -0.4 $H = I \overrightarrow{I_{He}} \cdot \overrightarrow{I_{Xe}}$ - He B_0 II -0.5 Or Arrow B₀ II $= \frac{1}{3} \gamma_{\mathrm{X}e} \mu_{\mathrm{He}} n_0 = -62$ mHz/atm $P_{\rm He}$ 0.8 0.85 0.9 0.95 h/d

A few practical take-aways from κ_{HeXe}

- J coupling between gases!
- Null projection of He on bias field (good tipping pulses)
- To null frequency ratio dep., consider cylinder size, orientation w.r.t. bias field
- A perfectly spherical comagnetometer cell *is sensitive* to imperfect tipping pulses

arxiv.org/abs/1805.11578

Dipolar and scalar ³He-¹²⁹Xe frequency shifts in mm-sized stemless cells arxiv.org/abs/1805.11578 $f_r = \frac{\omega_{He} \pm \Omega}{\omega_{Xe} \pm \Omega}$

- Precise and Accurate Detection with ⁸⁷Rb pi Pulse-trains + Ramsey
- Single-axis pump/probe, 300 s Xe wall time in anodically bonded cell

Rot

• Control and null classical dipolar fields h/d = 0.9065

6 mm³ active volume

• Observed ³He-¹²⁹Xe J-coupling

 $\kappa_{\rm HeXe} = -0.011 \pm 0.001$

Contact- info@twinleaf.com if you have interesting uses for bonded cells