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Low-Frequency Modulation of the Longitudinal Field: 
Modified Rabi Envelopes

 The mapping of a weakly driven two-level system with modulation 
onto a strongly driven system without modulation suggests that dif-
ferent regimes of spin dynamics, previously known for a strongly 
driven system (i.e. multiphoton resonances [9-10]), can be realized 
under easily accessible conditions with proper choice of modulation 
frequency and amplitude. This mapping is obtained by relating the 
equation governing the rotating-wave approximation (RWA)       
amplitude        during modulation of the longitudinal field,

Fig. 2 (a) Fast modulation demonstrates a slowing of the Rabi frequency. (b) The fast-
strong modulation regime also shows a slowing of the Rabi frequency, but also requires ad-
ditional corrections to the predicted form, which is seen experimentally. (c) The effect of 
strong-slow modulation on Rabi oscillations is shown. This regime can be mapped to a 
strongly driven, non-modulated system. 
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Fig. 3 (a) Shown are the results of a weak-resonant modulation and its effect on the Rabi 
envelope. (b) This regime lends itself to a convenient doubly rotating-frame Bloch sphere 
(RFBS) picture, the Rabi frame.

  Fig. 2 and 3 show the results from all three regimes. Fig. 2 (a) 
shows fast-modulation data that results from a time-average decrease 
of the component of the magnetization subject to a torque generated 
by     ; this leads to an effective Rabi frequency                   , where     
    is a zeroth-order Bessel function. Fig. 2 (b) shows fast-strong mod-
ulation data, where the slowing-down effect of the Rabi oscillations 
becomes more pronounced. Higher-order corrections manifest in the 
quickly oscillating components riding on top of the slow beat. 
  Fig. 2 (c) shows early time strong-modulation data fit to parabolic-
cylinder functions. The theory also predicts the non-trivial behavior 
seen with periodicity          = 0.166 ms. Fig. 3 (a) shows weak-
resonant data, where beats are observed in the Rabi oscillations. A 
parameter             determines the depth of the modula-
tion; maximum modulation is for    = 1. This maximum modulation 
is also understood by the Rabi frame picture developed in Fig. 3(b), 
where a second frame rotating at     is used. 

 The sensitivity of Rabi oscillations to low-frequency modulation 
(5-100 kHz) of the static longitudinal magnetic field     is studied [1]. 
Three regimes are considered: strong modulation (compared to the 
driving field strength    , (1-10 G), fast modulation (compared to the 
non-modulated Rabi frequency     ), and weak-resonant modulation. 
The experiments are straightforward to achieve in the laboratory, 
but can be mapped to more unconventional NMR conditions where    
     strength is much greater than     . We present experimental re-
sults that agree with predictions quantitatively, demonstrating 
proof-of-principle for a theory that can be applied to rotary satura-
tion and rotational echoes [2-3], adiabatic pulsing and cross polariza-
tion [4-6], and line-narrowing techniques [7-8]. 
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ẑ ẑ

x̂

ωm

M B1 B0 mod. BReff

RFBS

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Pulse Length (ms)

Non-Mod. Mod. Eq. 45 Early Fit Eq. 45 Late Fit

ΩR∆z ∆zc)
ẑ
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Fig. 1  A schematic and picture of 
the NMR probe used in the expei-
ments. A traditional NMR coil 
(B1) is accompanied by a B0 
modulation Helmholtz pair that is 
coaxial with the B0 field. 
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to a non-modulated, non-RWA equation. Here,    is the detuning of 
the     excitation field from resonance,     is the Larmor frequency as-
sociated with the modulation field,     is the frequency of the modu-
lation field, and      is the non-modulated, on-resonance Rabi fre-
quency. This equation is solved analytically for three limiting cases:      
            ,                       , and                             . 
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   A single-coil transmit/receive probe is 
series-tuned with a capacitor and 50-   
resistor at 88.8 MHz. For     homogeni-
ety, the water sample is contained in a 
small PTFE tube and occupies 25% of 
the coil volume.      modulation is pro-
vided by a 5-cm-radius Helmholtz pair 
(see Fig. 1) wound on a form, though an 
effective field can also be created by fre-
quency modulation of     . The two inde-
pendent transmission channels at 88.8 
MHz and 0-100 kHz were controlled by a 
Tecmag Redstone spectrometer, which 
also aquired the FID. The      RF pulse 
is amplified by a 2000W amplifier, which 
allowed the coherent nutation of the 
spins through many Rabi-oscillation peri-
ods. The     -modulation pulse is ampli-
fied by a DC-50 kHz gradient amplifier. 
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