³He-¹²⁹Xe Gyro with ⁸⁷Rb decoupled SERF detection M. E. Limes and M. V. Romalis **PRINCETON**

The premise of an NMR gyro is a comagnetometer measurement that is insensitive to bias field drift. We are developing this technology for use in a chip-scale inertial navigation system, and spin-gravity searches. In our NMR gyro, we detect the precession of spin-1/2 ³He-¹²⁹Xe using ⁸⁷Rb. Spin-exchange optical pumping occurs via a Fermi-contact interaction $H = \alpha S \cdot K$, where S and K are the operators for the alkali electron and noble-gas nuclear spins. This interaction also causes the spins to experience magnetic fields that are enhanced by a factor κ_0 over the classical dipolar field, where κ_0 is 6 for Rb-³He and 490 for Rb-¹²⁹Xe. Thus, ⁸⁷Rb detection allows us to approach nuclear spin shot-noise sensitivity. In turn, however, polarized ⁸⁷Rb is a source of instability in the ratio of the ³He and ¹²⁹Xe precession frequencies, ω_{He}/ω_{Xe} , in a $B_z \approx 0.5 \,\mu$ T field. Gyroscopic detection of a rotation rate Ω along B_{τ} shows up in the frequency ratio as $(\omega_{He} \pm \Omega)/(\omega_{Xe} \pm \Omega)$, so any instability in the ratio of precession frequencies degrades the NMR gyro performance. Our method of decoupling the noble gas spins from their interaction with ⁸⁷Rb at very low field requires three-axis averaging of any ⁸⁷Rb that is backpolarized from ¹²⁹Xe, along with "in-the-dark" ³He-¹²⁹Xe evolution. Our magnetometer operation uses a ⁸⁷Rb π pulse train in conjunction with $\sigma_{\perp}/\sigma_{\perp}$ pump light, which retains sufficient ⁸⁷Rb polarization for Faraday detection while mitigating the effect of polarized ⁸⁷Rb on the precessing ³He and ¹²⁹Xe. If the repetition rate of the ⁸⁷Rb π pulses exceeds the Larmor precession frequency of ⁸⁷Rb, this scheme refocuses the Rb-Rb spin exchange that causes Rb polarization loss. Hence, the Rb is decoupled from a (relatively) larger bias field than previous experiments done in a spin-exchange relaxation free (SERF) regime.

The y-only π pulses only average the ⁸⁷Rb polarization along the z

and x axes. When polarized ¹²⁹Xe (shown in purple), has a projection along the y axis, it "backpolarizes" the 87 Rb (shown in red). This leads to an additional field due to the ⁸⁷Rb affecting ³He and ¹²⁹Xe, scaled by the κ_0 enhancement of 6 and 490, respectively, and is a source of NMR gyro instability.

Our "in-the-dark" decoupling pulse scheme averages the ⁸⁷Rb polarization along three axes, introduces no net helicity of the field pulses, and can be rotated to null the effect of the sequence on the ratio of the precession frequencies.

[1] New Classes of Systematic Effects in Gas Spin Comagnetometers, D. Sheng, A. Kabcenell, M. V. Romalis, Phys. Rev. Lett. 113, 163002 (2014). [2] Nuclear spin gyroscope based on an atomic comagnetometer, T. W. Kornack, R.K. Ghosh, M. V. Romalis, Phys. Rev. Lett. **95**, 230801 (2005). [3] NMR Detection with an Atomic Magnetometer. I. M. Savukov and M. V. Romalis, Phys. Rev. Lett. **94**, 123001 (2005).

