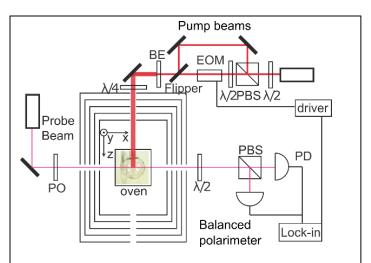

³He-¹²⁹Xe NMR Gyro with ⁸⁷Rb decoupled SERF detection

M. E. Limes, M. V. Romalis


Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ, 08544 USA

We aim to decrease the long-term bias drift and increase the sensitivity of a ¹²⁹Xe-³He NMR gyro using direct ⁸⁷Rb detection [1-4]. Our gyro in Fig. 1 uses two spin-1/2 noble gas species, ¹²⁹Xe and ³He, that each measure the same magnetic field in the same volume, operating as a comagnetometer and resulting in a measurement that is independent of any external static magnetic fields. A bias field of $B_z \sim 0.5 \,\mu\text{T}$ results in a detected frequency ratio of $(\omega_{He} + \Omega)/(\omega_{Xe} + \Omega)$, where Ω is a rotation of the apparatus about the *z* axis; in this way, we can use our technique to create a gyroscope for inertial navigation systems. If apparatus is kept completely still and all systematics are accounted for, a deviation of the frequency ratio from γ_{He}/γ_{Xe} would indicate the ¹²⁹Xe and ³He nuclei undergoing exotic spin couplings, e.g., a coupling to a gravitational field.

Spin-1/2 noble-gas nuclei have the benefits of long coherence times and high magnetic-field sensitivity. The nuclear-spin shot noise can be achieved if an alkali-metal vapor, such as ⁸⁷Rb, serves as the magnetometer for the spin-1/2 noble gas baths. This is a result of a Fermi-contact interaction causing an enhanced magnetic field over the classical dipolar field generated by the noble-gas nuclei, characterized by a factor κ_0 that is ~6 for ⁸⁷Rb-³He and ~490 for ⁸⁷Rb-¹²⁹Xe. While this enhancement improves the ability of the ⁸⁷Rb magnetometer to detect the noble gases, the ~10² difference in κ_0 causes fields experienced by the ³He and ¹²⁹Xe due to polarized ⁸⁷Rb to be significantly different, leading to long-term bias drift instability in the NMR gyro.

Figure 2. a) NMR gyro data taken using the Ramsey technique described above. ¹²⁹Xe and ³He are detected via a ⁸⁷Rb decoupled SERF magnetometer. b) A $B_y \pi$ pulse train causes ⁸⁷Rb to be sensitive to fields along the *y* axis and be decoupled from B_z ,

Figure 1. ³He/¹²⁹Xe is hyperpolarized along B_z . The ³He/¹²⁹Xe is then placed in the transverse plane, and operates as a co-magnetometer. An EOM for fast $\sigma_+-\sigma_-$ switching is used in conjunction with a sequence of ⁸⁷Rb $\pi_{\pm y}$ pulses, causing ⁸⁷Rb to be decoupled from B_z , and hence for spin-exchange relaxation free (SERF) operation [2]. The precessing ³He/¹²⁹Xe causes an overor under-rotation of the ⁸⁷Rb during a π pulse, resulting in a projection of ⁸⁷Rb along *x*. An off-resonant probe beam and balanced polarimeter is used for Faraday detection of this projection, and fed to a lock-in.

To remove the effect of κ_0 on the noble gas precession, comagnetometer phase accumulation can be performed "in-thedark" without optically pumping the alkali-metal vapor (shown in Fig. 2). However, even in-the-dark, the ⁸⁷Rb is "backpolarized" by the ¹²⁹Xe, so the ⁸⁷Rb-¹²⁹Xe interaction must be actively decoupled or else ⁸⁷Rb polarization instabilities manifest and cause uncontrolled noble-gas frequency shifts. During the inthe-dark evolution, we use fast repetition ⁸⁷Rb π pulses to decouple ⁸⁷Rb-¹²⁹Xe interaction by a factor of 10⁴. We are also able to rotate the ⁸⁷Rb π pulses at a frequency that is the sum of the ¹²⁹Xe and ³He precession frequencies, in order to null out the effect of the π pulses on the ¹²⁹Xe and ³He frequency ratio.

Our ⁸⁷Rb decoupled SERF magnetometer has a sensitivity of 40 fT/sqrt(Hz). The decoupling techniques described herein have produced an NMR gyro with a single-shot resolution of ~20 nHz and achieved a long-term bias drift of ~7.7 nHz at 7 h.

Supported by DARPA and NSF.

References:

[1] T. W. Kornack and M. V. Romalis, Phys. Rev. Lett. 89, 253002 (2002).

- [2] T. W. Kornack, et al., Phys. Rev. Lett. 95, 230801 (2005).
- [3] M. Smiciklas, et al., Phys. Rev. Lett. 107, 171604 (2011).
- [4] D. Sheng, et al., Phys. Rev. Lett., 113, 163002 (2014).