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Magnetic resonance in slowly modulated longitudinal field: Modified shape of the Rabi oscillations
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The sensitivity of the Rabi oscillations of a resonantly driven spin- 1
2 system to a weak and slow modulation of the

static longitudinal magnetic field B0 is studied theoretically. We establish the mapping of a weakly driven two-level
system with modulation onto a strongly driven system without modulation. The mapping suggests that different
regimes of spin dynamics, known for a strongly driven system, can be realized under common experimental
conditions of weak driving (driving field B1 � B0) upon proper choice of the domains of modulation frequency
ωm and amplitude B2. Fast modulation ωm � �R , where �R is the Rabi frequency, emulates the regime of driving
frequency much bigger than the resonant frequency. Strong modulation B2 � B1 emulates the regime B1 � B0.
Resonant modulation ωm ≈ �R gives rise to an envelope of the Rabi oscillations. The shape of this envelope is
highly sensitive to the detuning of the driving frequency from the resonance. Theoretical predictions for different
domains of B2 and ωm were tested experimentally using NMR of protons in water, where, without modulation,
the pattern of Rabi oscillations could be observed over many periods. We present experimental results which
reproduce the three predicted modulation regimes, and agree with theory quantitatively.
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I. INTRODUCTION

Ever since the oscillations of the population of Zeeman
levels in a resonant ac magnetic field were predicted theo-
retically by Rabi,1 they have been experimentally observed
in numerous media and in various spectral ranges from the
radio to the optical. The revival of interest in Rabi oscillations
during the past decade has been fueled by the fact that they
can now be measured in a single two-level system (qubit).
In fact, the observation2–15 of high-quality Rabi oscillations
in certain isolated two-level systems such as an exciton in
quantum dot,2–4 a Josephson junction,5–7 a single spin in a
dot,8–12 or a vacancy spin13–15 is viewed as evidence that the
corresponding qubit can be coherently manipulated.

Conventional experimental conditions for observation of
the Rabi oscillations are as follows: (i) The driving frequency
ω is in resonance with the splitting �Z = gμ0B0 of the spin
levels. Here g is the g factor and μ0 is the Bohr magneton. (ii)
The in-plane driving field 2xB1 cos ωt is much smaller than
the static longitudinal field zB0. This condition guarantees that
the Rabi frequency, which is defined as �R = gμ0B1, is much
smaller than �Z . Under conditions (i) and (ii) the classical
Rabi result,1

P+ 1
2
(t) = �2

R

ω2
0

sin2 ω0t

2
, (1)

for the oscillating population of the upper Zeeman level, which
was empty at t = 0, applies. Here

ω0 =
√

δ2 + �2
R (2)

is the oscillation frequency, and δ = �Z − ω is a detuning of
the driving frequency from resonance.

It is known16,17 that almost sinusoidal Rabi oscillations can
also be excited in the domains of parameters where conditions
(i) and (ii) are not met. One example16 is the multiphoton Rabi
oscillations which develop when the driving frequency is close
to

ω(p) = �Z

2p + 1
, (3)

where p is a positive integer. Another example17 is realized in
the domain of frequencies

ω ∼ �R � �Z. (4)

Existence of the domain Eq. (4) requires a strong driving field
B1 � B0, which is quite unusual for magnetic resonance.

The main point of the present paper is that the regimes
Eqs. (3) and (4), corresponding to an out-of-resonance driving-
field frequency and a strong driving-field amplitude, can be
actually realized when conditions (i) and (ii) are met, but the
longitudinal field contains a small slowly oscillating compo-
nent zB2(t), where B2 � B0. In other words, we will assume
that the Zeeman splitting �Z has a time dependent correction,

ε(t) = gμ0B2(t), (5)

and study how the classical result Eq. (1) is affected by this
correction. We will demonstrate that even when the magnitude
εm of the correction Eq. (5), which has the meaning of the
Larmor frequency associated with field B2, is much smaller
than �Z and when the frequency ωm of the oscillation of the
correction Eq. (5) is much smaller than �Z (see Fig. 1), its
effect on the Rabi oscillations can still be dramatic. To prove
this statement in Sec. II we map a weakly and resonantly driven
two-level system with modulation onto a strongly driven
system without modulation. In Secs. III–V we make use of
this mapping to study how different regimes of spin dynamics
emerge in different limits of modulation, namely, fast
(ωm � �R) modulation, strong (εm � �R) modulation, and
near-resonant modulation (ωm ≈ �R). In Sec. VI we report
the results of the experimental test of theoretical predictions.
NMR measurements on protons in water have the advantage
that, without modulation, the pattern of Rabi oscillations can
be observed over many periods. By applying the modulation
pulse with varying frequency and magnitude, we were able to
reproduce the above three regimes of spin dynamics. We would
like to note that, besides NMR, modulation of the level spacing
with magnitude and frequency comparable to �R is achievable
experimentally in other two-level systems for which the Rabi
frequency is low enough. These include the actively studied
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FIG. 1. (Color online) Schematic illustration of magnetic reso-
nance in a modulated longitudinal field; δ and �R denote the detuning
of the driving frequency ω from resonance and the Rabi frequency,
respectively. The Zeeman splitting �Z oscillates in time with a small
magnitude εm, which is the Larmor frequency associated with the
modulation field and frequency ωm.

candidates for qubits based on electron spin in a quantum
dot8–12 and vacancy spin in diamond.13–15 The lively evolution
of the Rabi oscillations with magnitude and frequency of
modulation, demonstrated in the present paper, would allow
to infer the information about these systems which is more
delicate than the information which could be inferred from the
ordinary Rabi oscillations. In particular, if electron spin levels
possess a fine structure due to, e.g., hyperfine interaction, this
structure will manifest itself in the shape of the envelope of
the Rabi oscillations induced by modulation. We elaborate
on this issue in Sec. VII, where concluding remarks are
presented.

II. MAPPING ONTO A STRONGLY DRIVEN SYSTEM
WITHOUT MODULATION

The time evolution of the amplitudes C+ 1
2

and C− 1
2

of two
spin orientations is governed by the system of equations

iĊ+ 1
2

= �Z + ε(t)

2
C+ 1

2
+ �RC− 1

2
cos ωt, (6)

iĊ− 1
2

= −�Z + ε(t)

2
C− 1

2
+ �RC+ 1

2
cos ωt. (7)

In the absence of modulation ε(t) = 0, it is convenient to re-
duce this system to a single second-order differential equation
by introducing, instead of C+ 1

2
and C− 1

2
, the combinations

A+ = C+ 1
2
+ C− 1

2
, A− = C+ 1

2
− C− 1

2
. (8)

The system of equations of motion for the amplitudes, A+ and
A−, read

iȦ+ = �Z

2
A− + �RA+ cos ωt, (9)

iȦ− = �Z

2
A+ − �RA− cos ωt. (10)

Upon expressing A− from Eq. (9) and substituting it into
Eq. (10), we arrive at the sought equation

Ä+ +
[

− iω�R sin ωt + �2
R cos2 ωt + �2

Z

4

]
A+ = 0. (11)

Assume now that the modulation is present, but, due to the
weakness of the ac field, �R � �Z , the system Eqs. (6) and (7)

can be treated within the rotating-wave approximation (RWA).
This amounts to the replacement of cos ωt by 1

2e−iωt in Eq. (6),
and by 1

2eiωt in Eq. (7). Then, upon standard transformation
into the rotating system,

C+ 1
2
(t) = D+ 1

2
(t)e− i

2 ωt , C− 1
2
(t) = D− 1

2
(t)e

i
2 ωt , (12)

these equations take the form

iḊ+ 1
2

= δ + ε(t)

2
D+ 1

2
+ �R

2
D− 1

2
, (13)

iḊ− 1
2

= −δ + ε(t)

2
D− 1

2
+ �R

2
D+ 1

2
. (14)

As a next step, we express D− 1
2

from Eq. (13) and substitute
it into Eq. (14). This leads to the following second-order
differential equation for D+ 1

2
:

D̈+ 1
2
+

[
i
ε̇(t)

2
+ (δ + ε(t))2 + �2

R

4

]
D+ 1

2
= 0. (15)

At this point we assume that the modulation is sinusoidal,

ε(t) = εm cos ωmt, (16)

and make the key observation that, for δ = 0, Eq. (15) reduces
to Eq. (11) upon replacement:

�R → �Z, εm → 2�R, ωm → ω. (17)

This mapping provides an important insight into the effect of
modulation of the longitudinal field on magnetic resonance.
Indeed, Eq. (11) captures the time evolution of the populations
|C+ 1

2
(t)|2 and |C− 1

2
(t)|2 when the ac drive is not weak, i.e.,

�R � �Z , so that RWA does not apply. On the other hand,
Eq. (15) describes the spin dynamics with weak ac drive, but
in the presence of the modulation. Solutions of Eq. (11), the
structure of which is dictated by the Floquet theorem, were
analyzed in a great number of papers starting from pioneering
works.16,17 Therefore, the approaches developed for a driven
spin- 1

2 system without modulation can be utilized for the case
when the modulation is present.

For example, in the absence of modulation, the resonant
drive of the spin- 1

2 system corresponds to the condition
ω = �Z . Then from Eq. (17) we conclude that the effect of
modulation on the Rabi oscillations is most pronounced when
the modulation frequency ωm is close to the Rabi frequency
�R . This sensitivity was previously pointed out in Refs. 18–22.

A less obvious consequence of the mapping Eq. (17) is
that, upon increasing the modulation strength εm, the Rabi
oscillations become sensitive to the modulation for modulation
frequencies close to

ω(p)
m = �R

2p + 1
. (18)

Condition Eq. (18) implies that the modulation affects the
Rabi oscillations when the modulation period contains an odd
number of Rabi periods. This condition is an analog of the
condition for multiphoton resonances in a driven two-level
system16 which take place at ac driving frequencies ω ≈ ω(p),
where ω(p) is given by Eq. (3).

Despite the fact that Eqs. (11) and (15) can be formally
mapped onto each other, the physical phenomena that they
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describe are vastly different. For the most prominent example,
ω ≈ �Z , Eq. (11) describes the Rabi oscillations of the
populations of the Zeeman levels, while Eq. (15) describes
a slow envelope of these oscillations, which emerges due to
modulation ε(t) of �Z . Formally, the difference stems from
the initial conditions, which must be imposed on the solutions
of Eqs. (11) and (15). If, for example, at t = 0 the spin points
down, then the initial conditions for Eq. (11) read

A+(0) = 1, Ȧ+(0) = i

(
�Z

2
− �R

)
. (19)

For the same initial state, the initial conditions for Eq. (15)
have the form

D+ 1
2
(0) = 0, Ḋ+ 1

2
(0) = −i

�R

2
. (20)

Below we study the spin dynamics P+ 1
2
(t) in different domains

of modulation frequencies and magnitudes.

III. FAST MODULATION: ωm � �R

Qualitatively, it is clear that weak modulation εm � ωm

averages out if the modulation frequency is much bigger than
�R . Then the Rabi oscillations remain unaffected. Nontrivial
modification of the Rabi oscillations takes place when both ωm

and εm are much bigger than �R . For conventional magnetic
resonance this regime corresponds to ω � �Z and �R � �Z

[see Eq. (17)], i.e., B1 � B0, which is exotic. Fast modulation,
on the other hand, is fully compatible with B1 � B0.

For simplicity we will consider the case of zero detuning
δ = 0. To analyze the limit ωm � �R it is convenient to
introduce the variables

D̃− 1
2

= D− 1
2
(t)e

iεm
2ωm

sin ωmt , D̃+ 1
2

= D+ 1
2
(t)e

−iεm
2ωm

sin ωmt ,

(21)

and to rewrite the system Eqs. (13) and (14) as

i ˙̃D− 1
2

= �R

2
e

iεm
ωm

sin ωmt D̃+ 1
2
, i ˙̃D+ 1

2
= �R

2
e− iεm

ωm
sin ωmt D̃− 1

2
.

(22)

If we now replace exp (± iεm

ωm
sin ωmt) by the time average

J0( εm

ωm
), where J0(z) is a zero-order Bessel function, the system

Eq. (22) will readily yield

D̃− 1
2

= cos

[
�R

2
J0

(
εm

ωm

)
t

]
,

(23)

D̃+ 1
2

= −i sin

[
�R

2
J0

(
εm

ωm

)
t

]
,

so that

P+ 1
2
(t) = sin2

[
�R

2
J0

(
εm

ωm

)
t

]
. (24)

The latter expression suggests that the effect of fast modulation
ωm � �R on the Rabi oscillations is the reduction of their
frequency by a factor J0( εm

ωm
). The reduction is significant when

the modulation amplitude εm is of the order of ωm.
The remaining task is to demonstrate that, for arbitrary

modulation strength εm, the condition ωm � �R justifies
the replacement of exp(± iεm

ωm
sin ωmt) by J0( εm

ωm
). For this

purpose we consider the correction to D̃+ 1
2

coming from higher
harmonics of exp( iεm

ωm
sin ωmt). It is convenient to cast this

correction in the form

D̃+ 1
2
+ i sin

[
�R

2
J0

(
εm

ωm

)
t

]

= − i�R

2ωm

∫ ωmt

0
dφ

[
e− iεm

ωm
sin φ − J0

(
εm

ωm

)]
cos ηφ, (25)

where we introduced a small parameter

η = �R

2ωm

J0

(
εm

ωm

)
� 1. (26)

There is a small prefactor in front of the integral. Still one has
to check that the integral does not grow at large ωmt . Suppose
that ωmt = 2πN . Then the integration over N modulation
periods can be reduced to a single integral from 0 to 2π in
which cos ηφ is replaced by

N∑
n=0

cos η(φ − 2πn)

= cos ηφ

2

(
sin 2πηN

tan πη
+ cos 2πηN + 1

)

+ sin ηφ

2

(
1 − cos 2πηN

tan πη
+ sin 2πηN

)
. (27)

We see that for N < η−1 the first term grows with N .
Moreover, this term is much bigger than the second term.
However, the correction Eq. (25) is determined by the second
term in Eq. (27). The reason is that the first term does not
depend on φ with accuracy η. On the other hand, the part of
the first term which is independent of φ does not contribute
to the correction Eq. (25). This is because the integral from
this part is zero. The second term in Eq. (27), by virtue of the
smallness of η, can be replaced by φ

π
sin2 πηN , so it remains

finite at large N . This proves that, even for strong modulation,
the correction Eq. (25) is ∼�R/ωm. In terms of the probability
P+ 1

2
(t), the correction Eq. (25) gives rise to a fast component,

as illustrated in Fig. 2.

IV. STRONG MODULATION: εm � �R � ωm

For strong modulation εm � �R , the term �2
R in Eq. (15)

is small compared to ε2(t) = ε2
m cos2 ωmt , which suggests that

Rabi oscillations do not develop. However, if the modulation
is slow enough, and the detuning δ is much smaller than �R ,
the term �2

R will be dominant during short (compared to ω−1
m )

time intervals near

t = tk =
(

π

2
+ πk

)
ω−1

m , (28)

when ε(t) passes through zero. Within these intervals we can
set t = tk + t1 and expand ε(t) with respect to t1. Then Eq. (15)
assumes the form

D̈+ 1
2
+

[
i
εmωm

2
+ ε2

mω2
mt2

1 + �2
R

4

]
D+ 1

2
= 0, (29)

where we assumed for definitiveness that k is odd.
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FIG. 2. (Color online) Fast-modulation regime ωm � �R . Modu-
lation causes slowing down of the Rabi oscillations, which are plotted
with dashed lines from Eq. (24) for ωm = 5�R and three values of
the ratio εm

ωm
: (a) 0.5, (b) 1.5, and (c) 2. Correction Eq. (25) gives

rise to the fast component of the Rabi oscillations. The probability
P+ 1

2
(t) with the fast component taken into account is shown with solid

lines.

The solution of Eq. (29) can be expressed in terms of
parabolic cylinder functions23

D+ 1
2
(t1) = f1Dν

(
e

πi
4

t1

τ

)
+ f2Dν

(
− e

πi
4

t1

τ

)
, (30)

where the characteristic time τ is given by

τ = 1

(εmωm)1/2
, (31)

and parameter ν is defined as

ν = −i
�2

R

4εmωm

. (32)

Expansion of ε(t) is justified under the condition ωmτ � 1,
which reduces to εm � ωm. With regard to parameter ν it can

be presented as a product |ν| = ( �R

2εm
)2( εm

ωm
). The first factor of

this product is small, while the second factor is large. This
means that, in the domain εm � �R � ωm, the value |ν| can
be both large and small. The magnitude of |ν| determines the
angle of the spin rotation as ε(t) passes through zero. To see
this, assume that at moment t = tk the spin points down. Then
the constants f1, f2 in Eq. (30) can be found from the initial
conditions Eq. (20), yielding

D+ 1
2
(t1) = |ν|1/2e− 3πi

4

2D′
ν(0)

[
Dν

(
e

πi
4

t1

τ

)
− Dν

(
−e

πi
4

t1

τ

)]
,

(33)

where D′
ν(0) is the derivative of Dν(z) at z = 0. The depen-

dence of D′
ν(0) on ν can be established from the integral

representation of the parabolic cylinder function23

D′
ν(0) =

(
2

π

)1/2

2ν/2 sin

(
πν

2

)
�

(
ν

2
+ 1

)
. (34)

Here �(z) is the gamma function. The probability P+ 1
2
(t1)

contains |D′
ν(0)|2, which, when using the properties of the

gamma function, can be simplified to

|D′
ν(0)|2 = |ν| sinh

(
π |ν|

2

)
. (35)

Substituting Eq. (35) into Eq. (33), we arrive at the final result,

P+ 1
2
(t1) = 1

4 sinh
(

π |ν|
2

)
∣∣∣∣Dν

(
e

πi
4

t1

τ

)
− Dν

(
− e

πi
4

t1

τ

)∣∣∣∣
2

.

(36)

In Fig. 3 the dependence P+ 1
2
(t1) is plotted from Eq. (36)

for different values of the parameter |ν|. We see that, starting
from zero, P+ 1

2
(t1) oscillates with t1, and, finally, saturates

at t1 � τ at some finite value P+ 1
2
(∞). To find P+ 1

2
(∞) we

use the large-z asymptote of the parabolic cylinder function23

Dν(z) ∼ zν exp ( 1
4z2), and the fact that the asymptotes of

t1 τ

0.7

0.1
0.3

P
1 2
t

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. (Color online) Strong-modulation regime εm � �R �
ωm. Spin dynamics persists only during short intervals |t − tk| ∼
τ � ω(−1)

m around the moments tk when modulation passes through
zero. Probability P+ 1

2
is plotted from Eq. (36) vs dimensionless time

(t − tk)/τ for three values of parameter |ν|, Eq. (32), describing the
strength of the ac drive. Green, red, and blue curves correspond
to the values |ν| = 0.1, |ν| = 0.3, and |ν| = 0.7, respectively. The
saturation value for the three curves is shown as the dashed lines,
determined by Eq. (37).
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Dν(z) and Dν(−z) differ by exp(iπν) = exp(−π |ν|). This
allows to find the saturation level of the numerator to be
4 sinh2(π |ν|

4 ) exp(−π |ν|
2 ). Subsequently, the saturation level of

P+ 1
2

assumes the form

P+ 1
2
(∞) = 1 − e−π |ν|

2
. (37)

The meaning of the result Eq. (37) is transparent. If the
driving field is weak, so that |ν| � 1, we have P+ 1

2
(∞) � 1,

which implies that the spin pointing down at t = tk retains
its orientation throughout the entire interval tk+1 − tk = π

ωm
. If

the driving field is strong, so that |ν| � 1, the spin, during the
short time � π

ωm
, will rotate to the position P+ 1

2
≈ P− 1

2
≈ 1

2 ,
i.e., will point along the x axis, and spend in this position the
remaining part of the interval tk+1 − tk .

V. WEAK-RESONANT MODULATION: ωm ≈ �R; εm � �R

A. Qualitative picture

In Sec. II, based on the mapping Eq. (17), we concluded
that Rabi oscillations are strongly sensitive to the modulation
of the longitudinal field when ωm is close to �R . It is
illustrative to discuss the effect of modulation near this
condition using the language of quasienergies. Within this
language, without modulation, the presence of a resonant
field with frequency ω ≈ �Z results in a degeneracy of
quasinenergies corresponding to Zeeman-split levels (see
Fig. 4). Conventional Rabi oscillations emerge as a result of
lifting this degeneracy (avoided crossing); the magnitude of
the splitting of quasienergies is �R .

With periodic modulation, the Hamiltonian in the
quasienergy representation remains time dependent and the
corresponding eigenstates are characterized by second-order
quasienergies. When the frequency of modulation is close to
�R , the first-order Rabi-split quasienergies become degen-
erate, leading to their additional splitting (see Fig. 4). The
magnitude of this additional splitting is controlled by the
modulation amplitude. In the time domain, this additional
splitting manifests itself via second-order Rabi oscillations
in the form of an envelope of the primary oscillations.

As we show below, the shape of this envelope is very
sensitive to the detuning ωm − �R of modulation frequency
from the Rabi frequency, and to the detuning δ of the driving
frequency from the Zeeman splitting �Z .

FIG. 4. (Color online) Schematic illustration of the second-order
Rabi oscillations emerging as a result of the slow modulation of the
static field B0. The driving resonant ac field splits the quasienergies
by �R; modulation with frequency ωm ≈ �R leads to an additional
splitting.

B. The shape of the envelope

Near the condition ωm = �R , Eq. (15) can be solved in the
resonant approximation, which amounts to keeping only two
terms in the Floquet expansion17

D+ 1
2
(t) = eiλt (d0 + d−1e

−iωmt ), (38)

where λ is the Floquet exponent. Substituting Eq. (38) into
Eq. (15) and equating the resonant terms, we get the following
system of coupled equations for the amplitudes d0,d−1:

(
�2

R + δ2 + ε2
m

2
− 4λ2

)
d0 = −(δ − ωm)εmd−1,

(
�2

R + δ2 + ε2
m

2
− 4(λ − ωm)2

)
d−1 = −(δ + ωm)εmd0.

(39)

For vanishing modulation εm → 0 both left-hand sides in the
system Eq. (39) turn to zero at the degeneracy point λ = 1

2ωm,

when the condition ωm = ω0 =
√

δ2 + �2
R is met. At finite εm

the system yields the splitting of the Floquet exponents

λ± = ωm

2
± εm�R

4ω0

√
κ2 + 1, (40)

where we introduced a dimensionless deviation

κ = 2(ωm − ω0)ω0

εm�R

(41)

of the modulation frequency from oscillation frequency ω0

and took into account that |ωm − ω0| � ω0. The steps leading
from Eq. (38) to Eq. (40) are the same as the steps leading
from Eq. (11) to the conventional Rabi oscillations Eq. (1).
The difference arises when one substitutes λ+,λ− into the
system Eq. (39), finds two linearly independent solutions,
D+

+ 1
2
(t) and D−

+ 1
2
(t), and requires that their sum satisfies the

initial conditions Eq. (20). After that, upon calculating the
occupation

P+ 1
2
(t) = |D+

+ 1
2
(t) + D−

+ 1
2
(t)|2, (42)

one arrives at the following generalization of Eq. (1) to the
case of modulated longitudinal field:

P+ 1
2
(t) = 1

κ2 + 1

{(
1−δ(κ�R + δ)

ω2
0

)
sin2

(
ω0

2
+ εm�R

4ω0
κ

)
t

+ �R(κ�R + δ)

2ω2
0(

√
κ2 + 1 − κ)

× sin2

[
ω0

2
+ εm�R

4ω0
(κ −

√
κ2 + 1)

]
t

+ δ(κ�R + δ)

ω2
0

sin2

(
εm�R

4ω0

√
κ2 + 1

)
t

− �R(κ�R + δ)

2ω2
0(

√
κ2 + 1 + κ)

× sin2

[
ω0

2
+ εm�R

4ω0
(κ +

√
κ2 + 1)

]
t

}
. (43)
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We start the analysis of Eq. (43) from the case of zero
detuning δ = 0 when it simplifies considerably:

P+ 1
2
(t) = 1

κ2 + 1

{
sin2

(
�R

2
+ εm

4
κ

)
t + κ

2(
√

κ2 + 1 − κ)

× sin2

[
�R

2
+ εm

4
(κ −

√
κ2 + 1)

]
t

− κ

2(
√

κ2 + 1 + κ)

× sin2

[
�R

2
+ εm

4
(κ +

√
κ2 + 1)

]
t

}
. (44)

This expression is consistent with Ref. 22 where a related
quantity, namely, the absorption of an external field by a
resonantly driven spin- 1

2 system in a modulated longitudinal
field, has been studied.

The last two terms in Eq. (44) describe the second-
order Rabi oscillations since their frequencies are split in
agreement with qualitative picture Fig. 4. Naturally, taking the
limit εm → 0, we recover the conventional Rabi oscillations
P+ 1

2
(t) = sin2(�Rt

2 ) for any κ . A nontrivial feature of Eq. (44)
is that exactly at ωm = �R , when κ = 0, the last two terms
cancel each other, i.e., the Rabi oscillations are unaffected
by the modulation. Gradual development of the second-order
oscillations upon increasing κ is illustrated in Fig. 5. We
see that the effect of modulation of longitudinal field is
most pronounced at dimensionless detuning κ ≈ 1, where the
modulation of the Rabi oscillations is complete [see Fig. 5(b)].
Upon further increasing κ , the effect of modulation vanishes
above κ = 4.

Beyond the resonant approximation,22 the difference ωm −
ω0 in Eq. (41) acquires a correction ∼ε2

m/�R , which is an
analog of the Bloch-Siegert shift.24

Solving Eq. (15) in the resonant approximation is also
permitted when ωm is close to ω

(p)
m = �R

2p+1 . Then the two
resonating terms in the Floquet expansion are d0 and d−(2p+1).
The splitting of the Floquet exponents, at the degeneracy point
λ = �R

2(2p+1) , takes place in the (2p + 1)th order in parameter
εm/�R . The magnitude of the splitting can be obtained
by readjusting notations in the expression for the width of
multiphoton resonance obtained in Ref. 17,

ε
(p)
m

2
=

(
εm

4

)(
εm

ω
(p)
m

)2p 1

22p−1(p!)2
. (45)

In the domain (ωm − ω(p)) ∼ ε
(p)
m , Eq. (44) remains valid

upon the replacement εm → ε
(p)
m and describes second-order

multiphoton Rabi oscillations. Naturally, if the modulation
is not purely sinusoidal but contains a harmonics, say, l, the
envelope of the Rabi oscillations near ωm = �R/l will already
develop in the lowest order.

In the absence of modulation, finite detuning δ of the
driving frequency from the resonant frequency �Z leads to
the reduction of the period of the Rabi oscillations and to the
reduction of their amplitude [see Eqs. (1) and (2)]. Remarkably,
in the presence of modulation, near the condition ωm = �R ,
finite δ causes an unconventional qualitative feature in the
shape of the Rabi oscillations. Moreover, the effect of finite δ

depends strongly on its sign.
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FIG. 5. (Color online) Evolution of the Rabi oscillation pattern
with detuning of the modulation frequency from the Rabi frequency.
Spin dynamics P+ 1

2
(t) under the resonant drive δ = 0 is plotted from

Eq. (44) for different dimensionless detunings, κ: (a) 0.5, (b) 1.0, and
(c) 1.5. The amplitude of modulation is εm = 0.1�R . Upon increasing
κ , the envelope (a) develops, (b) reaches maximum, and (c) gradually
vanishes.

In Fig. 6 we plot from Eq. (43) the evolution of the Rabi-
oscillation pattern as δ increases in the positive direction, while
parameter κ is kept constant. We see that, while for small
enough δ, the prime effect of modulation is still a slow envelope
of the oscillations, upon further increasing of δ, the envelope
gradually transforms into the oscillations of the baseline. At
large enough δ [Fig. 6(c)] these oscillations of the baseline
dominate the Rabi-oscillation pattern.

As δ increases in the negative direction (see Fig. 7), the
pattern of the Rabi oscillations evolves differently. At small
|δ| modulation gives rise to the envelope, similar to the case
of small positive δ. However, at a certain |δ| [see Fig. 6(b)],
the magnitude of the oscillations does not change with time
at all, suggesting that the effects of two detunings, ωm − ω0

and ω − �Z , cancel each other. Only upon further increase of
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FIG. 6. (Color online) Regime of weak-resonant modulation.
Evolution of the Rabi oscillation pattern with detuning δ of the
driving frequency ω from the level splitting �Z . Spin dynamics
P+ 1

2
(t) is plotted from Eq. (43) for three positive values of δ

�R
:

(a) 0.3, (b) 0.6, and (c) 1.4. The amplitude of modulation is
εm = 0.15�R; dimensionless detuning of the modulation frequency
from �R is κ = 1.0. The pattern gradually evolves from envelope of
the Rabi oscillations (a) to weak oscillations around the modulated
baseline (c).

|δ| does the magnitude of oscillations decrease significantly,
and they proceed around the slowly oscillating baseline, as
shown in Fig. 6(c). The plots in Figs. 6 and 7 are drawn
for the ratios εm/�R = 0.15 and εm/�R = 0.2, respectively,
however, general features of the modulation pattern depend
weakly on this ratio.

VI. TESTING THEORY WITH NMR EXPERIMENT

The introduction of the longitudinal modulation field ε(t) to
investigate the general behavior of Rabi oscillations is highly
compatible with conventional experimental NMR methods of
inductive detection in thermally generated spin ensembles.25
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FIG. 7. (Color online) Same as Fig. 6 for three negative values
of δ

�R
: (a) −0.2, (b) −2, and (c) −3. The pattern evolves from

(a) envelope to (b) homogeneous oscillations. Weak modulation of
the baseline emerges only at large detuning (c).

For the large B0 field generally required to achieve sufficient
signal-to-noise ratio (SNR), the condition B1 � B0 cannot be
avoided, but the additional small-amplitude modulation field
is easily realized [Fig. 8(a)]. The three regimes elucidated
in Secs. III–V were thus explored using straightforward
NMR of protons in water (gyromagnetic ratio γ = gμN =
4.257 75 kHz/G, where μN is the nuclear magneton). We
needed only to take some additional care to ensure a stable
and highly homogeneous rf driving field B1 across the sample,
so that the pattern of Rabi oscillations could be observed over
many periods.

All experiments were performed in a horizontal-bore 2-T
superconducting magnet (Oxford Instruments). A conven-
tional solenoidal single-coil transmit receive probe (five turns,
1 cm diam, and 2.5 cm long) was series tuned with a capacitor
to the proton Zeeman resonance at 88.8 MHz. A 50-�
resistor in series with these elements provided a matching
impedance to the transmit and receive amplifiers. This “low-Q”
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FIG. 8. (Color online) (a) A schematic of the NMR probe
used in the experiments. A conventional NMR coil (producing the
rf excitation field B1) is accompanied by a small (10-cm-diam)
Helmholtz pair that produces a small modulation field B2 parallel
to B0. (b) Graphical description of the relation between theoretical
predictions and experimental NMR data. The theoretical predictions
have the magnetization M projected onto the z axis of the Bloch
sphere. The experimental data is the projection of the magnetization
onto the xy plane of the Bloch sphere [see Eq. (46)].

probe sacrifices some SNR for a robust and flat frequency
response that is negligibly affected by the accompanying
modulation field.25,26 The water sample is centered in and
occupies about 25% of the coil volume; it is contained in a
small tube made of PTFE (TeflonTM), which minimizes the
magnetic-susceptibility difference between the sample and
its immediate surroundings. Both the low filling factor and
PTFE tube serve to enhance the B1-field homogeneity across
the sample. The modulation field (B2) was provided by a
5-cm-radius Helmholtz pair (coaxial with the main B0 field)
wound on a form that has the probe coil at its center [see
Fig. 8(a)]. A NMR spectrometer (Tecmag Redstone, model
HF2-1RX) with two independent transmission channels was
used to transmit pulses to both the 88.8 MHz proton probe
and the 0–100 kHz modulation coils, and subsequently to
acquire and digitize the free-induction-decay (FID) signal
generated in the probe coil. The B1 rf pulse was amplified
with a 2 kW amplifier (Tomco model BTO2000-AlphaSA)
conventionally designed for solid-state NMR, but whose high
output power allowed the coherent nutation of the proton
spins through many Rabi-oscillation periods in a relatively
short pulse time. The B0-modulation pulse was provided by
a DC-50 kHz amplifier normally used for gradient coils in
imaging applications (Techron AN7780); the inductance of the
Helmholtz pair was matched to the gradient amplifier’s output
specifications in order to minimize ringdown and associated
crosstalk to the NMR coil.

The FID signals were acquired on resonance (δ = 0) in
single-shot fashion (no signal averaging), and the FID signal
strength was plotted versus B1 pulse length. Each data point
displayed is the result of examining the corresponding FID
to determine the magnitude of the transverse magnetization
at a fixed time delay ≈0.2 ms from the end of the B1

rf pulse. The B1 and B2 modulation pulses are essentially
applied simultaneously, with the modulation pulse nominally
starting at ε(t) = 0 just as the B1 pulse starts. We assume
that the B1-pulse amplitude is fixed and the pulse length
is linearly related to the nutation angle of the proton spins.
Because of slight transient changes in power delivered by the
rf amplifier at the very beginning of the B1 pulse (minimized

by using a low-Q probe), this linear relationship is most
accurately observed for longer pulse times. Indeed, when
we determine �R experimentally using nonmodulated data,
we rely on measuring the average period of the later-time
oscillations. With this caveat in mind, the plots we show below
represent Rabi oscillations in the three modulation regimes
of interest. To decrease the overall data acquisition time, the
water sample contained dissolved copper sulfate (CuSO4)
to reduce the longitudinal relaxation time T1 to ≈100 ms.
One must generally wait at least several times T1 between
FID acquisitions to allow the magnetization to recover to its
characteristic thermal-equilibrium value. Intrinsic transverse
relaxation (characterized by T2) is typically on the order
of T1 in weakly interacting liquids. We observed transverse
decoherence caused by residual inhomogeneity (characterized
by T ∗

2 < T2) in the B1 field, which manifests most clearly
in our data as the overall decay of the nonmodulated Rabi
oscillations after many characteristic periods (see Figs. 9–11).

Dimensionless (     t)Ω  R

Dimensionless (     t)Ω  R(a)

(b)
Pulse Length (ms)

Pulse Length (ms)

Eq. 24 Fit
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Eq. 25 Fit
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FIG. 9. (Color online) Rabi oscillations in the fast-modulation
regime (green) compared to nonmodulated data (black). Transverse
spin projection P⊥ is plotted vs pulse length; the latter is linearly
related to the nutation angle. (a) The modulation amplitude εm is
small compared with ωm, and the modulated data show the expected
decrease in the effective Rabi frequency. A fit of the modulated data
to Eq. (24) is shown by the dashed red line. The experimentally
determined values of the modulation frequency ωm/2π = 41.30 ±
0.01 kHz, modulation amplitude εm/2πγ = 4.96 ± 0.06 G, and
the Rabi frequency �R/2π = 8.26 ± 0.05 kHz (determined from
the nonmodulated data) are input as fixed parameters. The fit
includes multiplication of Eq. (24) by e−t/T ∗

2 to account for the
overall decay; the fit then yields T ∗

2 = 1.28 ± 0.02 ms. (b) The
modulation amplitude is large compared with ωm, and the oscillation
frequency decreases significantly, in accordance with Eq. (24).
Here, ωm/2π = 31.5 ± 0.01 kHz and �R/2π = 3.10 ± 0.02 kHz
are experimentally determined. A fit that incorporates the correction
of Eq. (25) is shown in red, from which εm/2πγ = 13.0 ± 0.1 G is
extracted. The systematic discrepancy near P⊥(t) = 0 comes from
poor SNR and the fact that P⊥(t) is measured as a magnitude, so
that its noise cannot drop below zero. The correction gives rise to
the oscillations at ωm that ride on top of the much slower Rabi
oscillations.
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We note that the predictions made in Secs. III–V are
formulated in terms of the projection of the magnetization onto
the z axis of the Bloch sphere [see Fig. 8(b)]. Rabi oscillations
occur between the high- and low-energy states defined by B0,
where the low-energy state has magnetization parallel to B0.
However, the observable in a conventional NMR experiment
is the projection of the magnetization onto the xy plane of
the Bloch sphere. Noting also that the initial conditions at
time t = 0 for our predictions have P+ 1

2
(0) = 0, whereas the

experiments have P+ 1
2
(0) = 1, a simple transformation of the

z-axis prediction to the xy plane can be accomplished by

P⊥ = sin[arccos(2P+ 1
2
− 1)] = 2

√
P+ 1

2
− P 2

+ 1
2
. (46)

In Figs. 9–11 we display the experimentally measured trans-
verse magnetization data represented by P⊥ and compare them
to theory by transforming the predictions according to Eq. (46).
The initial peak of the nonmodulated Rabi-oscillation data,
which appears in black in each figure, is used to define P⊥ = 1
and to normalize the corresponding modulated data.

We begin with the fast-modulation regime ωm � �R stud-
ied in Sec. III, The picture in the “rotating frame” that results
from the application of the RWA is that of an average nutation
of the magnetization in the yz plane, superimposed with much
faster wiggles, which for small modulation amplitudes are
transverse to the yz plane. For larger modulation amplitudes,
the wiggles move the magnetization appreciably along the
surface of the Bloch sphere, giving rise to a time-average
decrease in the component of the magnetization that is in the
yz plane and subject to a torque generated by B1. This leads
directly to the slowing down of the Rabi nutation expressed by
Eq. (24).27 The wiggles also lead to the fast-modulation com-
ponent at ωm, expressed in Eq. (25), that is superimposed on
the slowed-down Rabi oscillations. Figure 9(a) demonstrates
that the corresponding experiments are sensitive to even the
small decrease in the effective Rabi frequency �RJ0( εm

ωm
) that

appears for weak modulation. We were able to fit this data with
Eq. (24) multiplied by a a decaying exponential that accounts
for the T ∗

2 decay. The Rabi frequency �R and modulation
amplitude εm were experimentally determined, respectively,
by examining the nonmodulated data and by measuring the
current in the modulation coils.

Figure 9(b) shows data in the regime of both fast and
strong modulation εm,ωm � �R , where corrections found in
Eq. (25) become apparent. As predicted, the slowing-down
effect on the Rabi oscillations now becomes pronounced, and
the small modulation at frequency ωm described by Eq. (25)
rides on top of the envelope given by Eq. (24). A peculiar
effect seen in the data and predicted in the theory is the
leveling off of the magnetization near the nutation angle π/2,
where the magnetization remains pinned on the xy plane. In
the fit of the data to Eq. (25) only εm was used as a free
parameter; for various technical reasons, larger modulation
amplitudes were more difficult to measure experimentally.
The Rabi frequency �R as determined from the unmodulated
data was a fixed parameter in the fit. We note that the ≈25%
reduction (due to smaller B1) in the value of �R determined
from the nonmodulated data appears to have eliminated the
effects of T ∗

2 decay in the unmodulated data of Fig. 9(b) as
compared to similar data in Fig. 9(a).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

0.0 0.02 0.04 0.06
0.0

0.5

1.0

0 20 40 60 80 100

0 1 2 3

Mod.

Non-Mod.

Eq. 36 Fit.

Pulse Length (ms)

Pulse Length (ms)

Dimensionless (     t)

Dimensionless (      )

Eq. 37

t/τ

Ω  R

P
⊥

P
⊥

FIG. 10. (Color online) Rabi oscillations in the strong-
modulation regime (green) compared to nonmodulated data (black).
Transverse spin projection P⊥ is plotted vs pulse length; the latter
is linearly related to the nutation angle. The lower part of the
figure shows the complete data set. Data without modulation yield a
Rabi frequency �R/2π = 17.7 ± 0.1 kHz. The applied modulation
frequency was ωm/2π = 3.0 ± 0.1 kHz. The critical regions near
ε(t) = 0 occur every 0.166 ms and are characterized by nontrivial
oscillation behavior; the first such region is shown expanded in the
upper part of the figure. The results of a fit (red) of the early-time
data to Eq. (36) yields εm/2πγ = 7.0 ± 0.05 G, which then leads
to |ν| = 0.9 ± 0.1. Both ωm and �R are fixed input parameters to
this fit. An asymptote (dashed maroon) is from Eq. (37) and is also
shown. Well away from the zero crossings of ε(t), the magnetization
continues to nutate in a more regular fashion; that it nutates at all is
the result of not sufficiently satisfying the limit εm � �R .

In the strong-modulation regime εm � �R � ωm studied
in Sec. IV, the picture in the rotating frame is that the slowly
sweeping modulation field brings the spins into resonance
for only a short fraction of the modulation period; in the
remaining time the modulation field is so large that the effective
field in the rotating frame lies along the z axis—the spins
are essentially out of resonance, and do not nutate. Our
experiments had εm at most only a few times �R and thus
did not achieve the limit εm � �R to a sufficient degree to
turn off the nutation completely, even when |ε(t)| was near a
maximum. However, the seemingly complicated data seen in
the lower half of Fig. 10 can still be understood to a significant
degree. Nontrivial behavior of the Rabi oscillations occurs
when ε(t) is near zero with periodicity π/ωm ≈ 0.166 ms,
as per Eq. (28). These critical regions of time are marked by
dramatic changes in the oscillation behavior lasting about one
Rabi period 2π/�R , whereas there is a relatively steady-state
oscillation for the remainder of the modulation period. In
general, the prediction given by Eq. (36) in Sec. IV can only
be applied when the initial spin state is known, which is only
true in our case for the critical region just after t = 0.

Hence, the upper half of Fig. 10 shows an expanded view of
the first 0.05 ms of this data set, which was fit to Eq. (36). The
fit shown uses the experimentally determined �R = 17.2 ±
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FIG. 11. (Color online) Rabi oscillations in the regime of weak-resonant modulation, showing definite beats that depend on the parameter
κ . The Rabi frequency is found from the nonmodulated data (black) to be �R/2π = 16.7 ± 0.7 kHz. The sensitivity of the fit to small
changes in the modulation frequency ωm and experimental limitations led us to float most of the experimental parameters and to perform two
separate fits of these data (green) to Eq. (44) for the early-time (red dashed) and late-time (blue-dashed) portions of the overall acquisition.
For the early-time fit, the extracted values are �R/2π = 16.5 ± 0.2 kHz, εm/2πγ = 0.91 ± 0.04 G, and ωm/2π = 17.56 ± 0.05, yielding
κ = 0.54 ± 0.14. For the late-time fit, the extracted values are �R/2π = 17.0 ± 0.2 kHz, εm/2πγ = 1.2 ± 0.1 G, and ωm/2π = 18.03 ± 0.09,
yielding κ = 0.40 ± 0.12.

0.1 kHz and determines εm = 7.0 G as a free parameter. Using
the values of �R , ωm, and εm, the parameter |ν| = 0.9 was
calculated from Eq. (32). Using this value the saturation level
shown with the dashed horizontal line is from Eq. (36). We note
with respect to the fit that εm and the other parameters derived
from it are extremely sensitive to whether the magnetization
reaches the xy plane (P⊥ = 1). The precision quoted for
ε(t) may thus be somewhat underestimated. Nonetheless, the
data and the fit clearly show the decreasing oscillation period
characteristic of the parabolic-cylinder functions on which the
theory in this regime is based.

The qualitative features of the data in Fig. 10 away from
the critical regions can also be understood. As the critical
time period near a zero crossing of εm ends, the magnetization
vector finds itself at some particular angle to the z axis that
would then essentially not change in the limit εm � �R until
the next zero crossing. Even when this limit is not well
satisfied, if the magnetization is close to being in the xy plane,
nutation about an effective field that is mostly along the z

direction will produce only small second-order changes in the
FID amplitude as the spins nutate: A clear example occurs
from 0.2 to 0.3 ms; here, the FID amplitude is very close to
maximum and there is a barely perceptible nutation. Larger
oscillations occur for lower values of the FID amplitude when
the magnetization is well away from the xy plane, with the
largest occurring between about 0.85 and 0.95 ms. We note that
the dephasing that occurs due to B1 inhomogeneity appears to
be decreased by the strong-slow modulation. The modulation
field has the effect of continuously refocusing the spins in
the rotating-frame yz plane, analogous to the way a Hahn
echo refocuses dephased transverse magnetization precessing
about an inhomogeneous B0.

In our study of the weak-resonant modulation regime
�R ≈ ωm � εm we focus on the limit where the B1 pulse
is on resonance with the Zeeman splitting, and the theoretical
prediction for the spin dynamics is given by Eq. (44). In this
regime we observe beats in the Rabi oscillations; the depth of
the modulation is determined by the parameter κ . In Fig. 11
we show a typical example; a fit of the modulated data to
Eq. (44) is qualitatively reasonable and clearly exhibits the beat

envelope. Quantitatively, a high-quality fit over the entire time
interval is made difficult by the extreme sensitivity of κ , which
contains a small difference (ωm − �R) � �R to experimental
errors in ωm. Because of the above complications, we allowed
most of the experimental parameters to become floating fit
parameters and performed separate fits for two time intervals,
“early” and “late,” as shown in Fig. 11. The values of κ

extracted from both fits were reasonably close to each other:
0.54 ± 0.14 for early and 0.40 ± 0.12 for late fits. We attribute
the discrepancy to the slow drift with time of the Rabi
frequency and the modulation-pulse parameters. The evidence
that this drift affects the fit can already be inferred from Fig. 9
for the fast-modulation regime. We note that, as was true
in the strong-slow modulation regime, dephasing due to B1

inhomogeneity is suppressed by the modulation field.

VII. CONCLUDING REMARKS

The main result of the present paper is the mapping Eq. (17)
which allows one to establish how a spin- 1

2 system under
a weak-resonant ac drive responds to a weak modulation
of the longitudinal field with magnitude εm and frequency
ωm that are both smaller than the Zeeman splitting �Z .
This response is strong and leads to a dramatic modification
of the Rabi oscillations when εm, remaining much smaller
than �Z , exceeds the Rabi frequency, �R . Another instance
when the response to modulation is strong corresponds to
εm � �R but ωm is close to �R . Then, within a narrow band,
|ωm − �R| ∼ εm, the Rabi oscillations develop an envelope
whose shape is very sensitive to the detuning of the B1

driving frequency from �Z . Experimentally, we have verified
qualitatively and quantitatively these nontrivial modifications
to Rabi nutation across a broad range of modulation-field
frequency and amplitude with fairly simple NMR experiments
on protons in water.

When both εm and ωm are smaller than �R , the Rabi
oscillations are, in general, unaffected by the modulation, but
even in this domain the oscillations acquire a fully developed
envelope in the vicinities of certain modulation frequencies
ω

(p)
m = �R/(2p + 1). With increasing p the period of the
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envelope increases, while the domain ω
(p)
m − ωm, where it

develops progressively, shrinks [see Eq. (45)]. Physically, the
limit p � 1 corresponds to a multiphoton process where the
role of photons is played by the “quanta of modulation.” This
limit is easily captured within the adiabatic approximation.28

In certain semiconductor materials of interest, where
magnetic resonance is detected electrically with the help of
the pulsed technique,29 the effect of modulation can be even
more peculiar. This is because the change of conductivity,
measured in experiment, is determined by synchronized Rabi
oscillations in pairs of spins, and reflects the beating of these
oscillations between the pair components.30

Our results are potentially applicable to important areas of
NMR itself. Consideration of B0 modulation in NMR goes
all the way back to the pioneering work of Redfield,31 and
has applications in rotary saturation and rotational echoes,32,33

adiabatic pulsing and cross polarization,34–36 as well as
line-narrowing techniques.37,38 We note that the apparent
self-refocusing of the dephasing due to B1 inhomogeneities
observed in Fig. 11 is of particular interest, since complicated
rf-pulse rotations about the effective field are currently often
used to accomplish this refocusing. In applications involving
hyperpolarized noble gases, the attainable signal-to-noise ratio
is only weakly dependent on the applied magnetic field; this
has led to efforts38 to do magnetic resonance imaging (MRI)
at (more convenient and cost-effective) low B0, for which the
regime B1 ∼ B0 can become relevant.

As it is seen from Figs. 6 and 7, in the case of resonant
modulation the shape of the envelope of The Rabi oscillations
is very sensitive to the detuning δ of the driving frequency from
the level spacing �Z . This sensitivity is much stronger than
the simple change of the frequency of the Rabi oscillations,
Eq. (1), with δ in the absence of modulation. This suggests
that modulation can be used to infer the information about
the underlying two-level system which is much more delicate
than the information inferred from the conventional magnetic
resonance. If, for example, the spin levels are split by some
small δ0 � �Z , the evolution of the shape of the envelope
with δ would reveal this splitting for δ close to δ0.

As a final remark, note that there is a conceptual similarity
between the second-order Rabi oscillations, which develop
at ωm = �R , and Rabi-vibronic resonance.39 In the latter
case, the modulation of spacing between the Zeeman levels is
accomplished via coupling of a two-level system to a harmonic
oscillator with frequency close to �R .
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