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Heading errors in all-optical alkali-metal-vapor magnetometers in geomagnetic fields
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Alkali-metal atomic magnetometers suffer from heading errors in geomagnetic fields as the measured mag-
netic field depends on the orientation of the sensor with respect to the field. In addition to the nonlinear Zeeman
splitting, the difference between Zeeman resonances in the two hyperfine ground states can also generate heading
errors depending on initial spin polarization. We examine heading errors in an all-optical scalar magnetometer
that uses free precession of polarized 87Rb atoms by varying the direction and magnitude of the magnetic field at
different spin-polarization regimes. In the high-polarization limit where the lower hyperfine ground state F = 1
is almost depopulated, we show that heading errors can be corrected with an analytical expression, reducing the
errors by up to two orders of magnitude in earth’s field. We also verify the linearity of the measured Zeeman
precession frequency with the magnetic field. With lower spin polarization, we find that the splitting of the
Zeeman resonances for the two hyperfine states causes beating in the precession signals and nonlinearity of the
measured precession frequency with the magnetic field. We correct for the frequency shifts by using the unique
probe geometry where two orthogonal probe beams measure opposite relative phases between the two hyperfine
states during the spin precession.

DOI: 10.1103/PhysRevA.103.063103

I. INTRODUCTION

Total-field atomic magnetometers measure the magnitude
of the magnetic field by directly measuring the Larmor pre-
cession frequency of the electron spins of alkali-metal atoms
in the presence of the field. They can operate in geomagnetic
fields (10–100 μT) and have a wide range of applications,
including space magnetometry [1–6], fundamental physics
experiments [7–10], biomedical imaging [11–14], archaeolog-
ical mapping [15,16], mineral exploration [17–20], searches
for unexploded ordnance [21–24], and magnetic navigation
[25–29]. The highest sensitivity for scalar magnetometers has
been achieved in a pulsed pump-probe arrangement with a
sensitivity of 0.54 fT/

√
Hz in a field of 7.3 μT [30]. However,

practical magnetometers need to operate in a geomagnetic
field around 50 μT. Recently, an all-optical pulsed gradiome-
ter has reached a magnetometer sensitivity of 14 fT/

√
Hz

over a broad range including earth’s field [31]. One major and
practical challenge of earth-field magnetometers is the control
of heading errors which otherwise significantly limit their ac-
curacy. They cause the measured field values to depend on the
orientation of the sensor with respect to the field, especially
presenting problems for the magnetometry-based navigation
[32–35].

All alkali-metal magnetometers suffer from heading errors
because alkali-metal isotopes have a nonzero nuclear spin
of I > 1

2 . There are mainly two physical sources of heading
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errors: the nonlinear Zeeman splitting due to mixing of ground
Zeeman states |F, m〉 and the difference in Larmor frequencies
for the two hyperfine manifolds due to the nuclear magnetic
moment. The nonlinear splitting corresponds to a difference
of 2.6 nT between neighboring Zeeman states for 87Rb in
a 50-μT field. At this field, the linear difference between
Zeeman resonance frequencies in F = 1 and F = 2 states is
200 nT. These splittings of the Zeeman resonance lines pro-
duce broadening and asymmetries in the line shape depending
on the orientation of the sensor with respect to the field.
For 87Rb in a 50-μT field, the orientation-dependent shifts
are on the order of 15 nT. Previous approaches of reducing
the heading errors in other alkali-metal-vapor systems have
focused on suppressing the nonlinear Zeeman splitting, in-
cluding double-modulated synchronous optical pumping [36],
light polarization modulation [32,33], measurements of high-
order polarization moments [37–40], use of tensor light shift
to cancel quadratic Zeeman splitting [41], and spin locking
with an additional radio-frequency (rf) field [42]. However,
most of them have some practical drawbacks such as com-
plexity in implementation or requiring use of rf fields. These
methods also do not cancel frequency shifts associated with
the difference of Zeeman resonances for F = 1 and F = 2
states. In magnetometers operated with continuous optical
pumping, the optimal sensitivity is achieved for spin polar-
ization generally near 50%. As a result, there is usually a
significant population in the F = 1 state which changes de-
pending on the orientation of the magnetometer relative to the
magnetic field.

In this paper we study heading errors as a function of
both the direction and magnitude of the magnetic field for a
wide range of initial spin polarization and implement several
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methods of their correction. With the all-optical, free-
precession 87Rb magnetometer, we use short-pulse pumping
technique to achieve very high initial spin polarization near
95% regardless of the field orientation such that the ini-
tial spin state is well defined. The population of the F = 1
state becomes negligible and Zeeman coherences decay much
faster in the F = 1 state than in the F = 2 state due to
spin-exchange collisions between alkali-metal atoms. In this
high-polarization limit, we can minimize the polarization-
dependent heading errors. We also find that the average
Larmor frequency is given by a simple analytical expression
that depends on the angle between the pump laser and the
magnetic field. We show this angle can be determined directly
from the spin-precession signals. Thus one can calculate a
correction for the heading error in real time. After correcting
for the heading errors, we find that the accuracy of the mag-
netometer is on the order of 0.1 nT as a function of both the
direction and the magnitude of the magnetic field for fields up
to 50 μT.

At lower spin polarization we observe interesting effects
due to a non-negligible contribution from the F = 1 state.
The difference in Zeeman frequencies of F = 1 and F =
2 states generates beating which is observable in the mea-
surement of spin-precession signals. Moreover, the measured
spin-precession frequency is no longer linear with the mag-
netic field, even though the splitting itself is linear with the
field. Here we use two probe beams to further correct for these
heading errors: One is collinear to the pump beam and the
other is perpendicular to the pump. These orthogonal probe
beams measure opposite relative phases of the two hyperfine
ground states during their precession, allowing one to cancel
any effects from the splitting in their Larmor frequency by
averaging the two probe measurements. This is due to the fact
that Zeeman coherences precess around the magnetic field in
opposite directions for F = 1 and F = 2 states. As a result,
we cancel the additional frequency shifts by averaging the
measurements of the two orthogonal probes. Furthermore, we
compare our experimental results with a density-matrix simu-
lation to easily separate signals from F = 1 and F = 2 states
and investigate frequency shifts due to the nuclear magnetic
moment.

II. ANALYTICAL CORRECTION OF HEADING ERRORS

For 87Rb atoms in ground states with electronic spin S =
1
2 , the energy of the Zeeman sublevel |m〉 with total atomic
angular momentum F is given by the Breit-Rabi formula [43]

E = − h̄ωhf

2(2I + 1)
− gIμBBm ± h̄ωhf

2

√
x2 + 4mx

2I + 1
+ 1,

(1)
where x = (gs + gI )μBB/h̄ωhf, gs and gI = μI/μBI are
the electronic and nuclear Landé factors, respectively, μB

is the Bohr magneton, B is the magnetic-field strength, ωhf is
the hyperfine splitting, I is the nuclear spin, and the ± refers to
the F = I ± 1

2 hyperfine components. In the earth-field range,
the m → m − 1 Zeeman transition frequency is given by [36]

ωF,m � (±μeff − gIμB)B

h̄
∓ μ2

effB
2

h̄2ωhf
(2m − 1)

= ωL ∓ ωrev(2m − 1), (2)

where μeff = (gsμB + gIμB)/(2I + 1), ωL = (±μeff −
gIμB)B/h̄ is the Larmor frequency, and ωrev = μ2

effB
2/h̄2ωhf

is the quantum-beat revival frequency which is nonlinear
to the field magnitude. The Larmor frequencies for the
two hyperfine states are approximately opposite, but not
exactly equal because of the gIμB term. The difference in
absolute frequencies is proportional to the magnetic field
and equal to 1.4 kHz at 50 μT, where the Larmor frequency
is equal to 350 kHz for 87Rb atoms. The nonlinear Zeeman
effect in earth’s field causes a splitting of 18 Hz between
neighboring Zeeman transitions, which is non-negligible for
magnetometer operation.

The measured transverse spin component can be written in
terms of the 87Rb ground-state density matrix as a weighted
sum of coherences oscillating at different Zeeman frequen-
cies, given by

〈Sx〉 = Tr(ρSx ) =
∑

Fm′=m±1

AFm,m′ρFm,m′ , (3)

where ρFm,m′ is the off-diagonal element of the density matrix
for an ensemble of 87Rb atoms in the coupled basis |Fm〉 and
AFm,m′ is its amplitude. We leave a detailed discussion of the
density-matrix analysis to Appendix B. The measured spin-
precession frequency is therefore a combination of different
Zeeman transition frequencies. Any variation in the sensor’s
orientation with respect to the field can change the relative
strength between the coherences, shifting the measured pre-
cession frequency.

In the high-spin-polarization limit we derive in
Appendix C the modification of the measured field due
to heading errors

B = 4hν

(gS − 3gI )μB

[
1 − 3ν

νhf
sinθ

P(7 + P2)

5 + 3P2

]
, (4)

where ν = ω/2π is the measured precession frequency, νhf is
the hyperfine splitting frequency, P is degree of initial spin
polarization, and θ is the angular deviation of the pump beam
from the nominal magnetometer orientation where the pump
laser is perpendicular to the magnetic field (see Sec. III for
more details). We assume the relative distribution of atoms in
the F = 2 state is given by the spin-temperature distribution.
The spin-temperature distribution is realized when the rate of
spin-exchange collisions is higher than other relaxation rates
[44]. It is also realized during optical pumping on a pressure
broadened optical resonance with fast J damping in the ex-
cited state [45]. These conditions are reasonably well satisfied
in our experiment. In a 50-μT earth field, the maximum size
of the correction given by Eq. (4) is on the order of 15 nT with
full polarization (P = 1).

Figure 1 shows the comparison between heading-error
correction calculated with Eq. (4) and numerical simulation
of the density-matrix evolution. The density-matrix model,
described in more detail in Appendix D, includes optical
pumping, free-spin-precession evolution, and signal fitting
as done in the experiment. They agree well in the high-
polarization limit. Thus, if we experimentally find the initial
polarization and extract the angle θ , we can use Eq. (4) to
find the heading-error free magnetic field. At low polarization
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FIG. 1. Ratio of heading-error correction at spin polarization
P < 1 to P = 1. The theoretical prediction calculated from Eq. (4)
(blue line) and the numerical simulation result (red circles) are
compared.

more complex behavior is expected due to the incomplete
depopulation of F = 1 state.

III. PULSED-PUMP DOUBLE-PROBE
87Rb MAGNETOMETER

We use a compact integrated magnetometer with the
schematic shown in Fig. 2. It consists of a 87Rb vapor cell,

FIG. 2. (a) Schematic of an integrated 87Rb magnetometer: NBS,
nonpolarizing beam splitter; HWP, half waveplate; QWP, quarter
waveplate; PBS, polarizing beam splitter; and PD, photodiode. The
polarizations of linearly polarized probe lasers and circularly polar-
ized pump lasers are shown. (b) Experimental rotation signals of the
horizontal probe (blue outer line) and vertical probe (red inner line)
acquired from the digital oscilloscope.

electric heaters, a pump laser, two probe lasers, and two po-
larimeters. The cell has a height and width of 5 mm and length
of 10 mm. It contains internal mirrors that allow pump and
probe beams to reflect back and forth many times inside the
cell. The probe beams exit the cell after 11 passes. The sensor
is placed inside a magnetic shielding on a rotation stage that
allows rotation of the whole assembly relative to the magnetic
field. The multipass cell is filled with enriched 87Rb vapor
and 700 Torr N2 buffer gas. It is typically heated to 100 ◦C,
giving a 87Rb number density of 4 × 1012 cm−3 as estimated
based on the measured transverse-spin-relaxation rate which
is further described in Appendix B.

The pump laser is directed in the x direction in Fig. 2,
circularly polarized and tuned to the 87Rb D1 line. It is
operated in a pulsed mode with several watts instantaneous
power. It has an adjustable repetition rate, number, and width
of pulses. The usual pumping cycle consists of 190 pulses
with a 70-ns single pulse width that is much shorter than
the Larmor period τ = 2π/γ Bz. For a resonant buildup of
the spin polarization, the pulse repetition rate is synchronous
with the Larmor frequency. The magnetic field is created by a
concentric set of cylindrical coils inside two layers of μ-metal
magnetic shields. The free spin precession is detected by
two off-resonant vertical-cavity surface-emitting laser (VC-
SEL) probe beams which are linearly polarized. One laser
propagates in the x direction, parallel to the pump laser (hor-
izontal probe), and the other propagates in the y direction,
orthogonal to the pump laser (vertical probe). Each balanced
polarimeter consists of a half waveplate, a polarizing beam
splitter, and two photodiodes with differential amplification.
The two differential signals Vver = V1 − V2 and Vhor = V3 − V4

are recorded by a digital oscilloscope and have the general
form of a sine wave with exponential decay plus an offset

V (t ) = V0cos(2πνt + d )e−t/T2 + VDC(t ), (5)

where V0 is the initial amplitude, ν is the precession frequency,
d is the phase delay, T2 is the transverse-spin-relaxation time,
and VDC is the offset. Figure 2(b) shows the experimentally
measured signals at 50 μT. The vertical probe shows a smaller
signal than the horizontal probe as it has a smaller interac-
tion volume from a smaller overlap region with the pump
beam. An external frequency counter (HP53310A) measures
the frequency of the signal by detecting its zero crossings dur-
ing the free-precession measurement time Tm = 3 ms, which
is comparable to T2. We add external high-pass filters with
fc = 20 kHz to cancel DC offsets in the signals going to the
frequency counter. We continuously measure the frequency
and read the center frequency of its histogram distribution
with a standard deviation of about 1 mHz.

Figure 3 describes the pump-probe geometry after a change
in sensor orientation. The horizontal probe is always collinear
to the pump and the vertical probe is always orthogonal to
the pump. In the initial configuration (θ = 0◦), the pump and
horizontal probe are in the x direction and the vertical probe
is in the y direction. After a sensor rotation, the pump beam
and horizontal probe are in the x′′ direction and tilted by θ

from the initial magnetometer orientation x, where the field
Bz is perpendicular to the spin. The vertical probe is in the y′′
direction at a small angle φ = 11◦ from y. This is due to the
small tilt of the sensor assembly relative to the vertical axis
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FIG. 3. Pump-probe geometry of a 87Rb magnetometer. Initially
the pump and the horizontal probe lasers propagate in the x direc-
tion, the vertical probe laser propagates in the y direction, and the
magnetic field is along the z direction. If the sensor gets tilted, we
apply two successive rotations: rotation by φ about x to the x′y′z′

system and rotation by θ about y to the x′′y′′z′′ system. In the final
configuration, the pump and the horizontal probe lasers propagate
in the x′′ direction and the vertical probe laser propagates in the y′′

direction.

of the rotation stage that supports the sensor. With the tilt of
the sensor, the rotation matrix transforming x, y, z to x′′, y′′, z′′
coordinates is

R =
⎛
⎝cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

⎞
⎠

⎛
⎝1 0 0

0 cosφ −sinφ

0 sinφ cosφ

⎞
⎠

=
⎛
⎝cosθ −sinθ sinφ −sinθ cosφ

0 cosφ −sinφ

sinθ cosθ sinφ cosθ cosφ

⎞
⎠. (6)

In the final configuration, the pump and the horizontal probe
are therefore in x̂′′ = cosθ x̂ + sinθ ẑ and the vertical probe is
in ŷ′′ = −sinθ sinφ x̂ + cosφ ŷ + cosθ sinφ ẑ.

IV. MEASUREMENT OF HEADING ERRORS

The pulsed pump laser can achieve very high initial
spin polarization near 95%. This minimizes the polarization-
dependent heading errors. In Fig. 4(a) we plot the simulated
signals for each hyperfine state separately, showing how much
each hyperfine state contributes to 〈Sx〉 for initial atomic spin
polarization P = 0.95. The F = 1 signal has a very small
initial amplitude compared to the F = 2 signal and decays
faster during the precession. To maximize the polarization
experimentally, we adjust the width and number of pump
pulses until the signal amplitude at t = 0 in Fig. 4 saturates.

In order to apply Eq. (4) to correct for the heading error,
one must know the tilt angle θ of the magnetometer as shown

FIG. 4. (a) Simulated decay for P = 2〈Sx〉 with initial polariza-
tion P0 = 0.95 for the F = 1 signal ×100 (yellow inner line) and the
F = 2 signal (violet outer line). (b) Measured spin-precession signal
in 50 μT at θ = 45◦ by the horizontal probe. (c) Measured signal
under the same condition by the vertical probe.

in Fig. 3. In the absence of other information about the field
direction, one can find the angle θ from the signal itself by
considering the DC component of the spin-precession signal.
Figures 4(b) and 4(c) show the measured signals at θ = 45◦
which have nonzero time-varying DC offsets compared to
Fig. 2. We applied a digital low-pass filter to the measured
signal to extract the DC component. The DC offset measures
the spin component parallel to the magnetic field. As shown
in Fig. 3, the sensor has a small tilt about x by φ such that the
vertical probe is not perfectly transverse to the field Bz. As a
result, the vertical probe signal also gains a small DC offset.

From Eq. (6), the initial optically pumped spin is 
S =
Sx̂′′ = S cosθ x̂ + S sinθ ẑ. Ignoring the spin relaxation for
simplicity, the precessing spin at angular velocity ω is then

S = S cosθ cosωt x̂ + S cosθ sinωt ŷ + S sinθ ẑ. The horizon-
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FIG. 5. Measured initial ratio of DC offset to AC amplitude for
the (a) horizontal probe and (b) vertical probe signals as a function
of θ . For the horizontal probe, it is fit to

√
DC/AC = tanθ . For the

vertical probe, it is fit to DC/AC = sin θ sin φ/
√

1 − cos2 θ sin2 φ +
a, where φ = 11.2◦ is the tilt angle of the vertical probe (see Fig. 3)
and a = −0.018 is the offset when θ = 0◦. To show the dependence
on φ, additional theoretical lines are shown for φ = 15◦ (red dash-
dotted line) and φ = 20◦ (blue dashed line).

tal probe detects the spin component

Sx′′ = 
S · x̂′′ = SAC + SDC = S cos2θ cosωt + S sin2θ. (7)

The first term is the projection of the Sx component which
oscillates. The second term is the projection of the Sz com-
ponent, resulting in the DC offset. Therefore, the ratio of the
initial DC offset to the maximum AC amplitude is SDC/SAC =
tan2θ . We show in Fig. 5 good agreement between this
equation and our measurements, allowing us to estimate the
magnitude of θ .

We can also determine the magnitude of φ based on the
vertical probe signal. The vertical probe detects the spin
component

Sy′′ = 
S · ŷ′′ = SAC + SDC

=S cosθ (cosφ sinωt −sinθ sinφ cosωt )+S sinθcosθ sinφ.

(8)

The ratio of the initial DC offset to the maximum AC
amplitude is then SDC/SAC = sin θ sin φ/

√
1 − cos2 θ sin2 φ.

Figure 5(b) shows the measurement of the SDC/SAC ratio
of the vertical probe signal, which gives an estimation of
φ = 11.2◦. We cannot find the sign of θ and φ independently
since they are coupled as shown in the expression of SDC/SAC.
The ratio of DC to AC signals can also be used to convert

the scalar magnetometer to a vector sensor, as discussed in
[46]. They introduce additional modulation of the probe laser
to determine the sign of θ .

To measure the heading errors we tilt the sensor with re-
spect to the field in the range −65◦ < θ < +65◦ and measure
the spin-precession frequency with the frequency counter. It is
important to separate heading errors due to spin interactions
from heading errors associated with remnant magnetization
of magnetometer components. Rotation of the sensor relative
to the field changes the projection of the remnant magnetic
fields onto the leading field, resulting in frequency shifts that
are hard to distinguish from atomic heading errors. The sensor
was constructed with a minimal number of magnetic compo-
nents. However, there are small amounts of polarizable ferrous
materials present in the laser mounts and other electronic
components. We have degaussed these components and turned
off heater electric currents during the measurement. Never-
theless, small offsets on the order of a few nanoteslas due
to remnant magnetization of the sensor remained. To account
for these offsets, we periodically reversed the polarization of
the pump laser with a half waveplate and took measurements
with both polarizations. This method is often used to cancel
heading errors by averaging the signals from the two pump
polarizations [32,33,47]. In this case we took the difference
of the signals to separate the heading errors due to the spin
interaction and those due to magnetization of the components
in the sensor head.

V. HEADING ERRORS AS A FUNCTION
OF SENSOR ORIENTATION

Figure 6 reports the measurement of heading errors in 10-
and 50-μT fields as a function of the sensor’s tilt angle θ .
If we take a difference between the two measurements at
opposite pump polarizations, the field values at θ = 0◦ are
canceled to the order of 0.01 nT. The angle θ is determined
from spin-precession signals with an uncertainty of about 1◦.
Fitting to Eq. (4) gives an estimation of the initial polarization,
about P = 0.9 for the parallel probe signal and P = 0.7 for
the vertical probe signal. As described previously, the vertical
probe has a smaller overlap with the pump beam than the
horizontal probe and measures optical rotation from atoms
that are less polarized. In a 10-μT field, the heading errors
are expected to be only 4% of those in 50 μT. The inset of
Fig. 6 shows that the residual errors are comparable and in
fact slightly smaller for the case of B = 50 μT. This indi-
cates that the residuals are likely due to imperfection in the
cancellation of remnant magnetization of sensor components.
Even so, we show that the amplitude of heading errors due to
atomic physics effects is reduced by about a factor of 50 for
the horizontal probe measurement and a factor of 20 for the
vertical probe measurement by the correction given by Eq. (4).

When the initial spin polarization is less than unity, there
is some contribution from the F = 1 state. This manifests
itself as an oscillation in the instantaneous spin-precession fre-
quency as illustrated in Fig. 7. The simulated spin-precession
signals are fit to Eq. (5) in individual time segments of 0.05 ms
to show the time dependence of the spin-precession frequency.
We find that it oscillates at 1.4 kHz, which is equal to the
difference between Zeeman frequencies for F = 1 and F = 2
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FIG. 6. Measurement of heading errors as a function of θ . They
are measured in B = 10 μT (red circles from horizontal probe and
black stars from vertical probe signals) and in B = 50 μT (red dia-
monds from horizontal probe and black squares from vertical probe
signals). Based on fitting to Eq. (4) (dashed lines), the initial polariza-
tions of the horizontal and vertical probe signals are estimated to be
P = 0.90 and P = 0.68, respectively. The heading-error estimation
at full polarization P = 1 is also shown (blue solid lines). The inset
shows the residuals of fitting of the heading errors. In B = 10 μT
the vertical (black stars) and horizontal (red circles) probe measure-
ments have residuals with standard deviations of 0.15 and 0.098 nT,
respectively. In B = 50 μT the vertical (black squares) and horizontal
(red diamonds) probe measurements have residuals with standard
deviation of 0.12 and 0.07 nT, respectively.

states at 50 μT. We confirmed that at other magnetic fields
the beating frequency is proportional to the magnetic field. As
expected, the amplitude of the oscillations becomes larger for
smaller spin polarization. The decay rate of the oscillations
depends on the T2 of the F = 1 coherences. This beating
effect is not sensitive to the orientation of the sensor, so the
oscillations at θ = 0 and θ = 45◦ are similar. However, for
θ = 45◦ one can observe a small additional slow drift of the
spin-precession frequency. This drift is due to differences in
the relaxation rate of F = 2 coherences, as discussed in more
detail in Sec. VI.

We find that the oscillations in the instantaneous spin-
precession frequency have opposite signs for the horizontal
and vertical probe beams, as illustrated in Fig. 7(b). As the
two hyperfine states have opposite spin-precession directions,
the horizontal probe detects a maximum signal when 〈Sx〉F=2

and 〈Sx〉F=1 are out of phase, while the vertical probe de-
tects a maximum signal when they are in phase. We can
therefore cancel the frequency oscillation by averaging the
two probe measurements, which reduces the amplitude of
frequency oscillations by more than two orders of magnitude.
This was experimentally verified as shown in the inset of
Fig. 7(b), which is based on fitting the experimental signal
to Eq. (5). The two probe measurements show opposite signs
of frequency oscillation. The oscillations are larger for the
vertical probe beam because it detects a lower average spin
polarization. The amplitudes of the experimentally observed
oscillations in the instantaneous spin-precession frequency
appear larger than those predicted by the simulation. This
could be due to spatial nonuniformity of the polarization in
the cell which is not taken into account in the simulation.

FIG. 7. (a) Simulated time evolution of precession frequency in
B = 50 μT. With P = 0.8 at θ = 0◦ (blue solid line) and at θ =
45◦ (red dash-dotted line), the initial oscillation amplitude is about

 f0 = 14 Hz. With P = 0.99 at θ = 0◦ (purple dotted line), it is

 f0 = 2 Hz. The frequency is estimated by fitting the simulated
signal to Eq. (5) with each time segment for 0.05 ms. (b) Simulated
time evolution of precession frequency with P = 0.8 at θ = 0◦. The
vertical probe (red solid line) and horizontal probe (blue dotted line)
results both have 
 f0 = 14 Hz and their average (black dash-dotted
line) has 
 f0 = 0.03 Hz. The inset shows the experimental result
with each segment fitting time of 0.05 ms. The vertical probe mea-
surement (red solid line) has 
 f0 = 38 Hz, the horizontal probe
measurement (blue dotted line) has 
 f0 = 23 Hz, and their average
(black dash-dotted line) has 
 f0 = 10 Hz.

VI. HEADING ERRORS AS A FUNCTION
OF THE ABSOLUTE MAGNETIC FIELD

In addition to investigating heading errors as a function
of the angular orientation of the sensor, we also study them
as a function of the absolute magnetic field. We measure
the spin-precession frequencies as a function of magnetic
fields at high (P = 0.85) and low (P = 0.2) polarizations with
the vertical probe. For these measurements it is necessary
to create a well-controlled linear magnetic-field ramp. The
measurements are performed inside magnetic shields which
generate a significant hysteresis of the magnetic field [48]. To
create a reproducible magnetic field we apply a staircase ramp
as illustrated in Fig. 8. The magnetic-field scan is repeated
several times without interruptions. The current through the
magnetic-field coil is monitored using a precision shunt resis-
tor while the repetition rate of the optical pumping pulses is
continuously adjusted under computer control to match the
Larmor frequency. After several up and down sweeps, we
average both the field and frequency measurements during the
same time period to suppress any field fluctuations.
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FIG. 8. Systematic modulation of magnetic field (blue upper
line) and simultaneous measurement of precession frequency (red
lower line). Each measurement lasts for 1 min with a transition time
of 10 s.

Figure 9 shows the measured precession frequency as a
function of fields with P = 0.85 at θ = 0◦. With a quadratic
fitting function, the frequencies for upward and downward
field sweeps show high curvature with opposite signs. This is
due to the magnetic shield hysteresis, and averaging the two
measurements reduces the curvature and residuals of linear
fitting by two orders of magnitude.

Figure 10 shows the results of averaging the upward and
downward field sweep measurements at two different po-
larizations P = 0.2 and 0.85. Even though the first-order
heading-error correction at θ = 0◦ is zero from Eq. (4), the
low-polarization result (P = 0.2) shows a curvature of −16 ×

FIG. 9. Measurement of spin-precession frequency as a function
of fields with P = 0.85 at θ = 0◦ with the vertical probe. It is fit
to a quadratic polynomial function (dashed lines). The curvature
is C = 153.99 × 10−4 Hz/μT2 for the upward field sweep (black
diamonds), C = −149.09 × 10−4 Hz/μT2 for the downward field
sweep (blue squares), and C = 2.46 × 10−4 Hz/μT2 for the case of
averaging the two measurements (red circles). The inset shows the
residuals of linear fitting of the frequency measurement as a function
of fields, expressed in magnetic-field units. The standard deviation is
0.38 nT for the upward field sweep (black diamonds), 0.37 nT for the
downward field sweep (blue squares), and 0.045 nT for the case of
averaging the two measurements (red circles).

FIG. 10. Measurement of spin-precession frequencies as a func-
tion of fields with P = 0.2 (black circles) and P = 0.85 (red
diamonds) with the vertical probe. They are fit to the quadratic
polynomial function (dashed lines). The curvature is C = −16.08 ×
10−4 Hz/μT2 at P = 0.2 and C = 2.46 × 10−4 Hz/μT2 at P = 0.85.
The inset shows the residuals of linear fitting of the frequency mea-
surement, expressed in magnetic-field units. The standard deviation
is 0.18 nT at P = 0.2 (black circles) and 0.045 nT at P = 0.85 (red
diamonds).

10−4 Hz/μT2, much higher than the curvature for high spin
polarization (P = 0.85) of 2 × 10−4 Hz/μT2.

Figure 11 shows the simulated curvature as a function
of polarization. The curvature is negligible in the high-
polarization limit but starts to increase at P < 0.7. The
curvature C = −16.52 × 10−4 Hz/μT2 at P = 0.2 with the
vertical probe agrees well with the experimental measure-
ment. This nonlinear frequency shift is due to the increase in
population of F = 1 state. The horizontal and vertical probe
beams have opposite curvature signs. So averaging of the two
signals can cancel the nonlinearity of the frequency, similar

FIG. 11. Estimation of curvature of spin-precession frequency as
a function of fields at θ = 0◦ with different initial spin polarizations.
This is based on the numerical simulation of the horizontal probe
(red diamonds) and the vertical probe signals (black circles).
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FIG. 12. Time evolution of the absolute values of simulated co-
herences ρFm,m−1 at θ = 0◦ with (a) P = 0.85 and (b) P = 0.2. The
F = 2 state has two distinct coherences (red solid and blue dotted
lines), while the F = 1 state has one distinct coherence (green dash-
dotted lines). Each curve is fitted to P = Ae−t/T2 .

to the cancellation of the instantaneous frequency oscillations
described previously.

To understand the origin of the nonlinearity we simu-
late the evolution of individual coherences. When θ = 0◦
the F = 2 state has two distinct coherences and the F = 1
state has one distinct coherence. Their initial amplitudes and
relaxation are shown in Fig. 12 for P = 0.85 and 0.2. The
relative strength of the F = 1 coherence is much higher at
P = 0.2 than at P = 0.85. As the nuclear spin causes split-
ting of Zeeman frequencies between two hyperfine states,
their interference can generate the observed frequency shift
at low polarization. To check the origin of the nonlinearity
we nulled the nuclear magnetic moment in the simulation
by setting gI = 0. The curvature at P = 0.2 then reduced to
C = 0.2 × 10−4 Hz/μT2. This suggests that the nonlinear fre-
quency shift at low polarization is interestingly caused by the
linear Zeeman interaction of the nuclear magnetic moment.

VII. CONCLUSION

In this paper we have studied heading errors in 87Rb mag-
netometer as a function of both the direction and magnitude
of the magnetic field at different initial spin polarizations. The
double-probe sensor has shown high sensitivity and signifi-
cant heading-error suppression.

In the high-spin-polarization limit, we can correct for head-
ing errors by using an analytical expression which is derived
based on the density-matrix formalism. With the correction,
the measured field accuracy is about 0.1 nT in a 50-μT earth
field. We verify linearity of the measured Zeeman frequency
with respect to the field up to earth’s field with a deviation of
less than 0.05 nT. At lower polarization, we observe additional
heading errors due to the difference in Larmor frequency of
the F = 1 and F = 2 states. This generates beating in the
measured frequency and it is no longer linear with the mag-
netic field. Numerical simulation shows that this nonlinearity
is interestingly caused by the linear Zeeman interaction of the
nuclear magnetic moment. To cancel these frequency shifts,
we average measurements from two orthogonal probe beams

that measure opposite relative phases between the two hyper-
fine coherences.

These results are useful in reducing systematics of alkali-
metal-vapor atomic magnetometers operating at geomagnetic
fields, especially those in navigation systems [25–29]. We
suggest methods of canceling heading errors with a wide
range of spin polarizations, and the pump-probe geometry
presented in this paper can give a real-time correction of
heading errors. Another method of canceling the heading er-
ror using an externally applied magnetic field was recently
discussed in [49]. Furthermore, the use of a small sensor and
VCSELs makes it suitable for the development of compact
and miniaturized sensors [50].
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APPENDIX A: 87Rb GROUND ENERGY LEVELS

The ground-state Hamiltonian of 87Rb atoms in the pres-
ence of an external magnetic field is [51]

H = AhfI · S + gsμBS · B − gIμBI · B, (A1)

where Ahf is the hyperfine constant, I is the nuclear spin, S
is the electron spin, B is the field vector, and gS and gI =
μI/μBI are the electron and nuclear g factors, respectively.
The first term corresponds to the hyperfine interaction and
the latter terms represent the Zeeman interaction of the elec-
tron and nuclear spin, respectively. If we define F = I + S
as the total atomic angular momentum, each hyperfine state
contains 2F + 1 magnetic sublevels. The eigenvalue of the
Hamiltonian gives the energy of the state, which is described
in Eq. (1). This can be further simplified in earth’s field using
x � 1 as [36]

E (F, m) = − h̄ωhf

2(2I + 1)
+ (±μeff − gIμB)Bm ∓ μ2

effB
2m2

h̄ωhf
,

(A2)

where μeff = (gsμB + gIμB)/(2I + 1).
The Landé factors for m → m − 1 Zeeman transitions

from Eq. (1) are shown in Fig. 13. For 87Rb atoms in
geomagnetic-strength fields the difference between Zeeman
resonances for F = 1 and F = 2 states dominates over non-
linear splitting within each hyperfine state.

APPENDIX B: DENSITY-MATRIX FORMALISM

Instead of a single wave function, we use a density matrix
to describe an ensemble of atoms in a mixed state. For a
number of atoms N , the density operator is

ρ = 1

N

∑
i

|ψi〉〈ψi|, (B1)

where |ψ〉 is the single wave function. The evolution of the
ground density matrix of 87Rb atoms is given by [45]

d

dt
ρ = 1

ih̄
[H, ρ] + RSE[ϕ(1 + 4〈S〉 · S) − ρ]

+ RSD[ϕ − ρ] + ROP[ϕ(1 + 2s · S) − ρ] + D∇2ρ.

(B2)
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FIG. 13. Landé factor gF = 
E/μBB for m → m − 1 Zeeman
transitions for 87Rb atoms in the ground state.

The first term corresponds to the evolution from the ground-
state free-atom Hamiltonian of Eq. (A1). It includes the
hyperfine coupling and the Zeeman interaction of the electron
and nuclear spin with the external magnetic field. In addition,
there is spin relaxation due to several collisional mechanism.
The second term describes the spin-exchange collisions be-
tween 87Rb atoms, where RSE is the spin-exchange rate, 〈S〉 is
the expectation value of spin, and S is the spin operator. This
process preserves total spins but redistributes populations in
the hyperfine states such that it destroys the spin coherence.
This is because the two hyperfine states precess in opposite
directions. The third term characterizes the spin-destruction
collisions of 87Rb atoms with other 87Rb atoms and buffer
gas N2 molecules, where RSD is the spin-destruction rate. The
spin-destruction collisions destroy the total spin of colliding
atoms. The general collisional rate is given by

R = nσ v̄, (B3)

where n is the atomic number density, σ is the effective
collisional cross section, and v̄ = √

8kBT/πM is the rela-
tive thermal velocity between the colliding atoms. Here T
is the temperature, kB is the Boltzmann constant, and M
is the reduced mass of the atoms. We operate with 87Rb
density on the order of 1012 cm−3, where the spin-exchange
rate between alkali-metal atoms dominates over other re-
laxation rates. This allows us to measure the 87Rb density
from the transverse-spin-relaxation time T2 = 8/RSE in the
low-polarization regime with the spin-exchange cross section
σSE = 1.9 × 10−14 cm2 [30]. The fourth term describes the
optical pumping effect, where ROP is the optical pumping
rate. Here s = ie × e∗ is the mean photon spin vector, where
e = E/|E| is the polarization unit vector. The fifth term char-
acterizes diffusion of 87Rb atoms to the cell walls in the
presence of buffer gas molecules, where D is the diffusion
constant.

The density matrix of an alkali-metal atom can be decom-
posed into a purely nuclear part which is

ϕ = 1
4ρ + S · ρS. (B4)

The collisions and optical pumping are sudden with respect
to the nuclear polarization such that they only destroy the
electron polarization and preserve the nuclear part as shown
in Eq. (B2).

The transverse spin component is a combination of co-
herences oscillating at different frequencies. Its expectation
value is

〈Sx〉 = Tr(ρSx ) =
∑

F m′=m±1

AF m,m′ρF m,m′

= 1

2(2I + 1)
[
√

(I + 1/2 − m)(I + 3/2 + m) ρI+1/2 m,m+1

+
√

(I + 1/2 + m)(I + 3/2 − m) ρI+1/2 m,m−1

−
√

(I + 1/2 + m)(I − 1/2 − m) ρI−1/2 m,m+1

−
√

(I + 1/2 − m)(I − 1/2 + m) ρI−1/2 m,m−1]. (B5)

For 
m = ±1 Zeeman transitions, the F = 2 state has four
coherences while the F = 1 state has two coherences.

If the probe laser is far detuned from the D1 line of
87Rb atoms such that the detuning is much larger than the
ground-state hyperfine splitting, its optical rotation angle is
proportional to 〈Sx〉 as [30]

φ = cre foscnl

ν − να

〈Sx〉, (B6)

where re = 2.82 × 10−13 cm is the classical electron radius,
fosc = 0.34 is the oscillator strength of the D1 transition of
87Rb, n is the vapor density, l is the path length of the probe
beam, and ν − να is the probe detuning.

APPENDIX C: DERIVATION OF AN ANALYTICAL
EXPRESSION OF THE HEADING-ERROR CORRECTION

Due to the nontrivial energy structure of 87Rb atoms, the
measured spin-precession frequency is a weighted sum of
different Zeeman transition frequencies. Let us assume that
the spin is initially fully polarized (P = 1). The system is in a
pure state as all spins are along the magnetic field Bz, which is
ρ0 = |2 2〉〈2 2|. We then rotate the spin about +y by an angle
θ ′ relative to the field. This is equivalent to applying the rota-
tion operator Dy = e−iθ ′Fy , which is represented by the Wigner
D matrix as dF

m′,m(θ ′) = 〈Fm′|e−iθ ′Fy |Fm〉 = DF
m′m(0, θ ′, 0).

The coherence between m and m − 1 is given by

ρF=2 m,m−1 = 〈2 m − 1|D†
yρoDy|2 m〉

= 〈2 m − 1|eiθ ′Fy |2 2〉〈2 2|e−iθ ′Fy |2 m〉
= D2∗

2 m−1(0, θ ′, 0)D2
2 m(0, θ ′, 0)

= d2∗
2 m−1(θ ′)d2

2 m(θ ′) (C1)

where m ranges from −1 to +2. By using Eq. (A2), the
weighted sum of the Zeeman transition frequencies up to
second order is

ωtot =
∑2

m=−1 A2 m,m−1ω2 mρ2 m,m−1∑2
m=−1 A2 m,m−1ρ2 m,m−1

= 1

4h̄
(−3gI + gS )μBB − 3(gI + gS )2μ2

BsinθB2

32Ahfh̄
, (C2)
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where A2 m,m−1 is derived from Eq. (B5). Here θ = 90◦ − θ ′
is the angle between the spin orientation and the nominal
magnetometer orientation where the field is perpendicular to
the spin as shown in Fig. 3.

The pulsed 87Rb magnetometer can achieve a high initial
spin polarization, about P = 0.9 where the F = 1 state is
almost depopulated. In this condition the atom is in a mixed
state of F = 2 sublevels which approximately follows the
spin-temperature distribution [44]. For a high optical pumping
rate for a pressure broadened optical line, one also reaches
spin-exchange equilibrium [45]. This is analogous to the ther-
mal equilibrium, and the relative population in each Zeeman
sublevel is described by the spin-temperature distribution

ρ(F, m) = eβm

Z
, (C3)

where Z = ∑F
m=−F eβm is the partition function and

β = ln[(1 + P)/(1 − P)] is the spin temperature that
depends on the spin polarization P = 2〈Sx〉. Therefore,
the initial atomic state is ρ0 = ∑2

m=−2 ρ2 m|2 m〉〈2 m| =∑
m(eβm/Z )|2 m〉〈2 m|. If we apply the rotation operator, each

coherence term becomes

ρF=2 m,m−1 = 〈2 m − 1|D†
yρ0Dy|2 m〉

=
2∑

m′=−2

ρ2m′ 〈2 m − 1|eiθ ′Fy |2 m′〉〈2 m′|e−iθ ′Fy |2 m〉

=
2∑

m′=−2

eβm′

Z
d2∗

m′m−1(θ ′)d2
m′ m(θ ′), (C4)

where m ranges from −1 to +2. The weighted sum of the
Zeeman transition frequencies is then

ωtot =
∑2

m=−1 A2 m,m−1ω2 mρ2 m,m−1∑2
m=−1 A2 m,m−1ρ2 m,m−1

= 1

4h̄
(−3gI + gS )μBB

− 3(gI + gS )2μ2
BsinθB2

32Ahfh̄

P(7 + P2)

5 + 3P2
. (C5)

It has an additional polarization-dependent factor and reduces
to Eq. (C2) at full polarization (P = 1).

Inverting Eq. (C5) results in

B = 4hν

(gS − 3gI )μB

[
1 − 3ν

νhf
sinθ

P(7 + P2)

5 + 3P2

]
, (C6)

where ν = ω/2π is the measured Larmor precession fre-
quency. To simplify this equation we set gI equal to zero in
the second term.

APPENDIX D: NUMERICAL SIMULATION METHOD

We simulate the optical rotation signal by solv-
ing the density-matrix equation of Eq. (B2) with
parameters matching the experimental condition and
calculate 〈Sx〉 with Eq. (B5). The spin-exchange
rate is RSE = nRbσSEv̄RbRb = 3.6 × 103 s−1, where
nRb = 4.4 × 1012 cm−3, σSE = 1.9 × 10−14 cm2, and
v̄RbRb = 430 m/s. The relative thermal velocity is calculated
at cell temperature T = 100 ◦C. The spin-destruction rate is
RSD = nRbσRbRbv̄RbRb + nN2σN2Rbv̄RbN2 = 110 s−1, where
σRbRb = 9 × 10−18 cm2, σRbN2 = 1 × 10−22 cm2 [52],
v̄RbN2 = 620 m/s, and nN2 = 1.7 × 1019 cm−3. We fit the
simulated signal to Eq. (5) for Tm = 3 ms to estimate the
spin-precession frequency. The simulated signal has a slightly
longer T2 than the measured signal by 0.5 ms. This can be due
to field gradients or diffusion broadening [53].
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