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INTRODUCTION

The transient behavior of spin-dependent transition rates of dipolar
D and exchange J coupled paramagnetic (s=1/2) spin pairs, during
coherent magnetic resonance excitation, is studied numerically using
Liouville space formalism. We predict that the Rabi oscillation under
the condition of strong D coupling will have a v 2v1 component,
where ~v is the gyromagnetic ratio and B is the field strength of the
driving radiation. In addition, we find that existing experimental
pulsed electrically and optically detected magnetic resonance
(PEDMR,/pODMR) data can be modeled by the inclusion of a strong
J, such that the difference in resonant Larmor frequencies within the
pair (the so-called Larmor separation) Aw is small compared to the
difference of J and D. These results show that a pEDMR or pODMR
experiment can measure exchange and dipolar coupling strengths be-
tween spin pairs.

THEORY

The evolution of the spin-pair density matrix p under coherent mag-
netic resonance is governed by the stochastic Liouville equation,1

N .
Ocp = o |p, H | + 51p).

H is the spin-pair Hamiltonian with Zeeman, exchange, and dipolar
terms, and S is a stochastic term with annihilation and creation

terms present during the excitation.

COMPUTATIONAL METHOD

We adopt a Liouville space formalism? which leads to a factor of 10°
decrease in computation time over conventional ODE solvers. The
essence of the Liouville space formalism is representing the 4x4 spin-
pair density matrix as a 16x1, and generating a set of 16x16 superop-
erators. Adopting this convention gives an extremely convenient so-
lution to the inhomogeneous stochastic Liouville equation,

p(t) = eG4 (p(0) + G K) — G 'K, p(0) = G;'K.

(7 is the evolution superoperator, GGg is the steady-state (B1=0) evo-
lution superoperator, and K is the generation term. From this, we
generate a transient of the observable ()(7) . The observable does not
depend on polarization (as in an ESR experiment), but rather de-
pends on the permutation symmetry and transition rates of the spin
pair. Q(7) is then fast fourier transformed, making the Rabi frequen-
cies of (Q(7) explicit.
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Fig. 1 A visual description of the computational method is given. First, parameters are se-
lected and a transient of the observable (Q(7) is generated. Then, the transient is (fast) Fou-
rier transformed. The frequency of the magnetic resonance pulse is swept and many tran-
sients are obtained, generating a Rabi mapping that is compared with experimental data.

RESULTS

(I) 0 10 MHz 40 MHz 80 MHz DN (H) 1 @)
o ;) [00M O G (OB M
o | |
4 I O O A
LSEND  S0SE ) 433 | g
= | | |
R S A A A A
() VARG A0SENG) T SOSEND 4
L W L
S V2 \ / l \/ l ki lv
g 1 I I VvV vV V V I |
0 S I N A A A A
() 293W @) 20AE @) 492N p) 0./l
: | |
= 2
3 \[12 i vy i v v iv V V
= 4 T S FE— R—
(@ L.84MJ(r) |.S60M[(s) 3A46M[(t) 5.46M
q I I I
-
= 2 v y
5 V V V
§ \q i i i 0 10 20
(a)—a)o)/yB1
-10 0o 10 -10 O 10 -10 O 10 -10 O 10
J/2r (w— awy)/yB;
Fig. 2 Plots of the FFT of the observable Q)(7) as a function of driving frequency
w. wo 1s the average of the Larmor separation between the spin pair, and €2 is the Rabi fre-
quency. The color scales are in arbitrary units, with magnitudes listed next to the scale.
Aw = 40 MHz in all graphs. (I) A mapping comparing a wide range of dipolar D and ex-
change J couplings. (II) A dipolar Pake distribution is generated with J = 0 and D = 80
MHz. (IIT) A dipolar Pake distribution is generated with J = 300 MHz and D = 80 MHz.
(a) | | | | | | | | _ (b) -
| i 3 g
_ _4 8
Q Q ~
o >~ 2 z
g 2~ ") c a
1 ST V2
<
3 C:} 1
T T T T T ] T
2.04 2.02 2.00 1.98 2.02 2.00 1.95 2.00 2.05
g-value g-value g-value

Fig. 3 (a-c) Adapted from Ref. [3-5], respectively. (a) Experimental pODMR data from
amorphous silicon (a-Si:H). (b) Experimental pODMR data from geminate charge carrier
pairs in a-Si:H. (¢) Experimental pEDMR data from amorphous silicon-rich silicon-nitride.

DISCUSSION

The experimental data in Fig. 3a and 3b show a strong signal with
Rabi frequency of v2vB7 and no strong low-frequency components
(<vB1). However, Fig. 2 IIb, which has only dipolar coupling,
shows strong low frequencies. In Fig. 2 Illb, our simulation pre-
dicts that a spin pair with a large dipolar coupling and small
Larmor separation Aw compared to the difference of J and D will
also produce a Rabi frequency of v 2vB1 and no strong low fre-
quencies. From this, we conclude that strong dipolar and strong
exchange coupling account for the a-Si:H data.
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