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The transient behavior of spin-dependent transition rates of dipolar 
D and exchange J coupled paramagnetic (s=1/2) spin pairs, during 
coherent magnetic resonance excitation, is studied numerically using 
Liouville space formalism. We predict that the Rabi oscillation under 
the condition of strong D coupling will have a 

√
2γB1 component, 

where γ is the gyromagnetic ratio and B1 is the field strength of the 
driving radiation. In addition, we find that existing experimental 
pulsed electrically and optically detected magnetic resonance 
(pEDMR/pODMR) data can be modeled by the inclusion of a strong 
J, such that the difference in resonant Larmor frequencies within the 
pair (the so-called Larmor separation) ∆ω is small compared to the 
difference of J and D. These results show that a pEDMR or pODMR 
experiment can measure exchange and dipolar coupling strengths be-
tween spin pairs.   

NUMERICAL STUDY OF SPIN-DEPENDENT ELECTRONIC 
TRANSITION RATES BETWEEN TWO DIPOLAR AND EX-

CHANGE COUPLED PARAMAGNETIC (S=1/2) STATES DURING 
COHERENT EXCITATION BY MAGNETIC RESONANCE

The evolution of the spin-pair density matrix ρ under coherent mag-
netic resonance is governed by the stochastic Liouville equation,

∂tρ̂ =
i

�
[ρ̂, Ĥ ] + S [ρ̂].

H is the spin-pair Hamiltonian with Zeeman, exchange, and dipolar 
terms, and S is a stochastic term with annihilation and creation 

terms present during the excitation. 

We adopt a Liouville space formalism, which leads to a factor of 103 
decrease in computation time over conventional ODE solvers. The 
essence of the Liouville space formalism is representing the 4x4 spin-
pair density matrix as a 16x1, and generating a set of 16x16 superop-
erators. Adopting this convention gives an extremely convenient so-
lution to the inhomogeneous stochastic Liouville equation, 

Fig. 2 Plots of the FFT of the observable Q(τ) as a function of driving frequency
ω. ω0 is the average of the Larmor separation between the spin pair, and Ω is the Rabi fre-
quency. The color scales are in arbitrary units, with magnitudes listed next to the scale.  
∆ω = 40 MHz in all graphs. (I) A mapping comparing a wide range of dipolar D and ex-
change J couplings. (II) A dipolar Pake distribution is generated with J = 0 and D = 80 
MHz. (III) A dipolar Pake distribution is generated with J = 300 MHz and D = 80 MHz.

G is the evolution superoperator, Gs is the steady-state (B1=0) evo-
lution superoperator, and K is the generation term. From this, we 
generate a transient of the observable Q(τ) . The observable does not 
depend on polarization (as in an ESR experiment), but rather de-
pends on the permutation symmetry and transition rates of the spin 
pair.  Q(τ) is then fast fourier transformed, making the Rabi frequen-
cies of Q(τ) explicit.

Fig. 1  A visual description of the computational method is given. First, parameters are se-
lected and a transient of the observable Q(τ)  is generated. Then, the transient is (fast) Fou-
rier transformed.  The frequency of the magnetic resonance pulse is swept and many tran-
sients are obtained, generating a Rabi mapping that is compared with experimental data. 
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Fig. 3 (a-c) Adapted from Ref. [3-5], respectively. (a) Experimental pODMR data from 
amorphous silicon (a-Si:H). (b) Experimental pODMR data from geminate charge carrier 
pairs in a-Si:H. (c) Experimental pEDMR data from amorphous silicon-rich silicon-nitride. 
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The experimental data in Fig. 3a and 3b show a strong signal with 
Rabi frequency of 

√
2γB1 and no strong low-frequency components 

(≤γB1). However, Fig. 2 IIb, which has only dipolar coupling, 
shows strong low frequencies. In Fig. 2 IIIb, our simulation pre-
dicts that a spin pair with a large dipolar coupling and small 
Larmor separation ∆ω compared to the difference of J and D will 
also produce a Rabi frequency of 

√
2γB1 and no strong low fre-

quencies. From this, we conclude that strong dipolar and strong 
exchange coupling account for the a-Si:H data.
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ρ̂(t) = eGt(ρ̂(0) + G −1K) − G −1K, ρ̂(0) = G −1
s K.
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